BeaulieuJM.ca/publi/Bea2000a

Hierarchical Segmentation of SAR Images with Shape Criteria

Jean-Marie Beaulieu

Computer Science Department Laval University
in collaboration with
Geomatic Research Center, Laval University
Canadian Center for Remote Sensing, Ottawa

Image Segmentation

 is the division of the image plane into regionsTwo basic questions:

1- What kind of regions do we want?

- Homogeneous regions
- Segment similarity

2- How can we obtain them?

- Algorithm desing

HIERARCHICAL SEGMENTATION BY STEP-WISE OPTIMISATION

A hierarchical segmentation begins with an initial partition P^{0} (with N segments) and then sequentially merges these segments.
level $\mathrm{n}+1$
level n
level n -1

Segment tree

STEP-WISE OPTIMISATION

- A criterion, corresponding to a measure of segment similarity, is used to define which segments to merge.
- At each iteration, an optimization process finds the two most similar segments and merges them.
- This can be represented by a segment tree, one node per iteration, where only the two most similar segments are merged.

Sequence of segment merges.

Implantation aspects

- too many segments
- merge only neighbour segments
- avoid recalculation

IMAGE APPROXIMATION

- Each segment, S_{i}, is represented by an approximation function, $\mathrm{r}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})$.
- The approximation error is defined as

$$
\mathrm{H}\left(\mathrm{~S}_{\mathrm{i}}\right)=\sum_{(\mathrm{x}, \mathrm{y}) \varepsilon \mathrm{S}_{\mathrm{i}}}\left(\mathrm{f}(\mathrm{x}, \mathrm{y})-\mathrm{r}_{\mathrm{i}}(\mathrm{x}, \mathrm{y})\right)^{2}
$$

- The goal is to find the image segmentation that produces the lowest overall approximation error.
- In hierarchical segmentation, this results in sequentially merging the segments that produce the smallest increases in the approximation error.
- Thus, the step-wise criterion is

$$
\mathrm{C}_{\mathrm{i}, \mathrm{j}}=\mathrm{H}\left(\mathrm{~S}_{\mathrm{i}} \cup \mathrm{~S}_{\mathrm{j}}\right)-\mathrm{H}\left(\mathrm{~S}_{\mathrm{i}}\right)-\mathrm{H}\left(\mathrm{~S}_{\mathrm{j}}\right)
$$

- This assures that each iteration does its best to minimize the overall approximation error.

Constant value approximation

$$
\begin{aligned}
& f_{i}(x, y) \simeq r_{i}(x, y)=\mu_{i} \quad \text { (mean) } \\
& C_{i, j}=\frac{N_{i} \times N_{j}}{N_{i}+N_{j}}\left[\mu_{i}-\mu_{j}\right]^{2}
\end{aligned}
$$

Multi-spectral image

$$
C_{i, j}=\frac{N_{i} \times N_{j}}{N_{i}+N_{j}} \sum_{k} w^{k}\left[\mu_{i}^{k}-\mu_{j}^{k}\right]^{2}
$$

A SMALL EXAMPLE

Gray
level
values

Initial
partition

Sequence of segment merges.

Segment description parameters and neighbour lists.

	N_{i}	$\mu_{\text {i }}$	B_{i}	(neighbour lists)			
S1	3	1.0	S2	S4	S5	S6	
S2	3	2.0	S1	S3	S4	S5	
S3	3	13.0	S2	S5	S7		
S4	1	10.0	S1	S2	S5		
S5	2	3.0	S1	S2	S3	S4 S	S7
S6	2	6.0	S1	S5	S7		
S7	2	10.0	S3	S5	S6		

Make the information explicit.

Calcul of criteria from segment descriptors

		Lists of criteria at each iteration
i, \mathbf{j}	Ci,j	it. 1
1,2	1.5	1.5
1,4	60.7	60.7
1,5	4.8	4.8
1,6	30.0	30.0
2,3	181.5	181.5
2,4	48.0	48.0
2,5	1.2	1.2
3,5	120.0	120.0
3,7	10.8	10.8
4,5	32.7	32.7
5,6	9.0	9.0
5,7	49.0	49.0
6,7	16.0	16.0

Update segment description and neighbour lists.

	$\mathbf{N}_{\mathbf{i}}$	$\mu_{\mathbf{i}}$	$\mathbf{B}_{\mathbf{i}}$	(neighbour lists)					
S1	3	$\mathbf{1 . 0}$	S2	S4	S5	S6			
S2	3	2.0	S1	S3	S4	S5			
S3	3	13.0	S2	S5	S7				
S4	1	10.0	S1	S2	S5				
S5	2	3.0	S1	S2	S3	S4	S6	S7	
S6	2	6.0	S1	S5	S7				
S7	2	10.0	S3	S5	S6				
S8	5	2.4	S1	S3	S4	S6	S7		

Recursive descriptor and criterion

i, j	Ci, j	it. 1	it. 2	it. 3	it. 4	it. 5	it. 6
1, 2	1.5	1.5					
1, 4	60.7	60.7	60.7				
1, 5	4.8	4.8					
1, 6	30.0	30.0	30.0				
2, 3	181.5	181.5					
2, 4	48.0	48.0					
2, 5	1.2	1.2					
3, 5	120.0	120.0					
3, 7	10.8	10.8	10.8	10.8			
4, 5	32.7	32.7					
5, 6	9.0	9.0					
5, 7	49.0	49.0					
6, 7	16.0	16.0	16.0	16.0			
8, 1	3.7		3.7				
8, 3	210.7		210.7				
8, 4	48.1		48.1				
8, 6	18.5		18.5				
8, 7	82.5		82.5				
9, 3	270.0			270.0			
9, 4	58.7			58.7	58.7		
9, 6	27.2			27.2	27.2		
9, 7	105.6			105.6			
10, 6	48.1				48.1		
10, 9	303.1				303.1		
11, 4	48.4					48.4	
11, 10	277.0					277.0	
12, 10	244.6						244.6

Segment description parameters and neighbour lists.

	$\mathbf{N}_{\mathbf{i}}$	μ_{i}	B $_{\mathbf{i}}$	(neighbour lists)					
S1	3	1.0	S2	S4	S5	S6			
S2	3	2.0	S1	S3	S4	S5			
S3	3	13.0	S2	S5	S7				
S4	1	10.0	S1	S2	S5				
S5	2	3.0	S1	S2	S3	S4	S6	S7	
S6	2	6.0	S1	S5	S7				
S7	2	10.0	S3	S5	S6				
S8	5	2.4	S1	S3	S4	S6	S7		
S9	8	1.9	S3	S4	S6	S7			
S10	5	11.8	S6	S9					
S11	10	2.7	S4	S10					
S12	11	3.4	S10						
S13	16	6.0							

Sequence of segment merges.

iter. 6
iter. 5
iter. 4
iter. 3
iter. 2
iter. 1

SEGMENTATION OF 32x32 LANDSAT IMAGES

36
segments

212
segments

Sum of approximation error

SEGMIENTATION OF 128x128x4 LANDSAT IMAGES

SEGMENTATION OF SAR IMAGE

SAR IMAGE \rightarrow COHERENT SIGNAL (RADAR)
\rightarrow INTERFERENCE PATTERN

MULTIPLICATIVE NOISE

NOISE IS PROPORTIONAL TO THE AMPLITUDE

NEW CRITERION

The segment dispersion (difference) is divided by the segment mean

$$
C_{i, j}=\frac{N_{i} \times N_{j}}{N_{i}+N_{j}}\left[\frac{\mu_{i}-\mu_{j}}{\mu_{i \cup j}}\right]^{2}
$$

IMPORTANT NOISE

PROBLEM WITH THE FIRST MERGES

4 regions, 4 looks, 100x100

10 segments, standard criterion

10 segments, shape criterion

standard criterion

100 Segments

1000 Segments

2000 Segments

Shape vs standard criterion, 1000 segments

with shape criterion

without shape criterion

SHAPE CRITERIA

-Bonding box - perimeter Cp
-Bonding box - area Ca
-Contour length
Cl
New criteria

$$
C s_{i, j}=C_{i, j} * C p^{2} * C a * C l
$$

Bonding box - perimeter

$$
C p=\frac{\text { perimeter of } S_{i} \cup S_{j}}{\text { perimeter of bonding box }}
$$

Bonding box - area

$$
C a=\frac{\text { area of bonding box }}{\text { area of } S_{i} \cup S_{j}}
$$

Contour length

Segments

Segments

1K
Segments

CONCLUSION

- Hierarchical segmentation produces goods results
-Criterion should be adapted to the application
-The first merges should be done correctly
- Shape criteria are useful

