BeaulieuJM.ca/publi/Bea2001a

Utilisation of Contour Criteria in Micro-Segmentation of SAR Images

Jean-Marie Beaulieu

Computer Science Department
Laval University
in collaboration with
Canadian Centre for Remote Sensing, Ottawa Geomatic Research Centre, Laval University

Image Segmentation

 is the division of the image plane into regionsTwo basic questions:

1- What kind of regions do we want?

- Homogeneous regions
- Segment similarity

2- How can we obtain them?

- Algorithm design

HIERARCHICAL SEGMENTATION BY STEP-WISE OPTIMISATION

A hierarchical segmentation begins with an initial partition P^{0} (with N segments) and then sequentially merges these segments.
level $\mathrm{n}+1$
level n
level n -1

Segment tree

STEP-WISE OPTIMISATION

- A criterion, corresponding to a measure of segment similarity, is used to define which segments to merge.
- At each iteration, an optimization process finds the two most similar segments and merges them.
- This can be represented by a segment tree, one node per iteration, where only the two most similar segments are merged.

Sequence of segment merges.

Segmentation by hypothesis testing

Two hypothesis
H0: segments are similar
H1: segments are different

Distributions of the statistic d under H0 and H1

Two types of errors
Type I: not merging similar segments
Type II: merging different segments

$$
\begin{aligned}
& \alpha=\operatorname{Prob}(\text { Type I errors) } \\
& \beta=\operatorname{Prob}(\text { Type II errors) }
\end{aligned}
$$

Select the threshold to minimise α or β, but not both simultaneously

In hierarchical segmentation, type II errors

 (merging different segments) can not be corrected, while type I errors can be corrected later on.

The distribution of H 1 and β are unknown. Reduce β by increasing α.

Sequential testing:

α will be reduced as segment sizes increase.
$\alpha_{1+2+\ldots .} \leq$ minimum $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$
$\beta_{1+2+\ldots} \geq$ maximum $\left(\beta_{1}, \beta_{2}, \ldots\right)$

Stepwise criterion

Find and merge the segment pair (\mathbf{i}, \mathbf{j}) that minimises $\mathrm{V}_{\mathrm{i}, \mathrm{j}}(=1-\alpha)$.

Constant value region with uniform additive noise

$$
\text { Region } \mathrm{R}_{\mathrm{k}} \propto \mathrm{~N}\left(\mathrm{~m}_{\mathrm{k}}, \sigma^{2}\right)
$$

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{i}, \mathrm{j}}=\left|\mu_{\mathrm{i}}-\mu_{\mathrm{j}}\right| \\
& \mathrm{v}_{\mathrm{i}, \mathrm{j}}=\operatorname{prob}\left(\mathrm{d} \leq \mathrm{d}_{\mathrm{i}, \mathrm{j}} ; \mathrm{H} 0\right) \\
& \mathrm{v}_{\mathrm{i}, \mathrm{j}}=\int_{-\mathrm{d}_{\mathrm{i}, \mathrm{j}}}^{\mathrm{d}_{\mathrm{i}}} \frac{1}{\sqrt{2 \pi} \sigma_{\mathrm{d}}} \exp \left(\frac{-\mathrm{x}^{2}}{2 \sigma_{\mathrm{d}}^{2}}\right) \mathrm{dx} \\
& \mathrm{v}_{\mathrm{i}, \mathrm{j}}=2 \operatorname{erf}\left(\mathrm{~d}_{\mathrm{i}, \mathrm{j}} / \sigma_{\mathrm{d}}\right) \\
& \text { where } \sigma_{\mathrm{d}}^{2}=\left(1 / \mathrm{N}_{\mathrm{i}}+1 / \mathrm{N}_{\mathrm{j}}\right) \sigma^{2}
\end{aligned}
$$

Constant value region

$$
C_{i, j}^{\text {ward }}=\frac{\mathrm{d}_{\mathrm{i}, \mathrm{j}}}{\sigma_{\mathrm{d}}}=\sqrt{\frac{\mathrm{N}_{\mathrm{i}} \mathrm{~N}_{\mathrm{j}}}{\mathrm{~N}_{\mathrm{i}}+\mathrm{N}_{\mathrm{j}}}} \frac{\left|\mu_{\mathrm{i}}-\mu_{\mathrm{j}}\right|}{\sigma}
$$

SEGMENTATION OF SAR IMAGE

SAR IMAGE \rightarrow COHERENT SIGNAL (RADAR)
\rightarrow INTERFERENCE PATTERN

MULTIPLICATIVE NOISE

$$
\mathrm{p}(\mathrm{I})=\frac{1}{\Gamma(\mathrm{~L})}\left(\frac{\mathrm{L}}{\mu}\right)^{\mathrm{L}} \mathrm{I}^{\mathrm{L}-1} \exp (-\mathrm{L} \mathrm{I} / \mu)
$$

Noise is proportional to the amplitude

SAR criterion

Using a Gaussian approximation for large NL value, we have:

$$
\begin{gathered}
\sigma_{d}^{2}=\left(1 / N_{i}+1 / N_{j}\right) \mu_{i+j}^{2} / L \\
C_{i, j}^{s a r}=\frac{d_{i, j}}{\sigma_{d}}=\sqrt{\frac{N_{i} N_{j}}{N_{i}+N_{j}}} \frac{\left|\mu_{i}-\mu_{j}\right|}{\mu_{i+j}} \sqrt{f}
\end{gathered}
$$

The segment dispersion (difference) is divided by the segment mean

IMPORTANT NOISE

PROBLEM WITH THE FIRST MERGES

SHAPE CRITERIA NEEDED

SHAPE CRITERIA

- Bonding box - perimeter Cp
-Bonding box - area $\quad \mathrm{Ca}$
-Contour length
Cl
New criteria

$$
\mathrm{C}_{\mathrm{i}, \mathrm{j}}^{\text {contour }}=\mathrm{C}_{\mathrm{i}, \mathrm{j}}^{\mathrm{sar}^{2}} \times \mathrm{Cp}^{2} \times \mathrm{Ca} \times \mathrm{Cl}
$$

4 regions, 4 looks, 100x100

10 segments, standard criterion

10 segments, shape criterion

standard criterion

100 Segments

1000 Segments

2000 Segments

Shape vs standard criterion, 1000 segments

with shape criterion

without shape criterion

SHAPE CRITERIA

- Bonding box - perimeter Cp
-Bonding box - area $\quad \mathrm{Ca}$
-Contour length
Cl
New criteria

$$
\mathrm{C}_{\mathrm{i}, \mathrm{j}}^{\text {contour }}=\mathrm{C}_{\mathrm{i}, \mathrm{j}}^{\mathrm{sar}^{2}} \times \mathrm{Cp}^{2} \times \mathrm{Ca} \times \mathrm{Cl}
$$

Bonding box - perimeter

$$
C p=\frac{\text { perimeter of } S_{i} \cup S_{j}}{\text { perimeter of bonding box }}
$$

Bonding box - area

$$
C a=\frac{\text { area of bonding box }}{\text { area of } S_{i} \cup S_{j}}
$$

Contour length

 ETH

SAR image

1000 segments

SAR image

10 K segments

Segments

Segments

1K
Segments

CONCLUSION

- Hierarchical segmentation produces goods results
-Criterion should be adapted to the application
-The first merges should be done correctly
- Shape criteria are useful

