BeaulieuJM.ca/publi/Bea2001a

Utilisation of Contour Criteria in Micro-Segmentation of SAR Images

Jean-Marie Beaulieu

Computer Science Department Laval University

in collaboration with Canadian Centre for Remote Sensing, Ottawa Geomatic Research Centre, Laval University Image Segmentation is the division of the image plane into regions

Two basic questions:

- 1- What kind of regions do we want?
 - Homogeneous regions
 - Segment similarity
- 2- **How** can we obtain them ?
 - Algorithm design

HIERARCHICAL SEGMENTATION BY STEP-WISE OPTIMISATION

A hierarchical segmentation begins with an initial partition P^0 (with N segments) and then sequentially merges these segments.

Segment tree

STEP-WISE OPTIMISATION

- A criterion, corresponding to a measure of segment similarity, is used to define which segments to merge.
- At each iteration, an optimization process finds the two most similar segments and merges them.
- This can be represented by a segment tree, one node per iteration, where only the two most similar segments are merged.

Sequence of segment merges.

Segmentation by hypothesis testing

Two hypothesis

- H0: segments are similar
- H1: segments are different

Two types of errors Type I: not merging similar segments Type II: merging different segments α = Prob(Type I errors)
β = Prob(Type II errors)

Select the threshold to minimise α or β , but not both simultaneously

In hierarchical segmentation, type II errors (merging different segments) can not be corrected, while type I errors can be corrected later on.

The distribution of H1 and β are unknown. Reduce β by increasing α .

Sequential testing:

 α will be reduced as segment sizes increase.

 $\alpha_{1+2+\dots} \leq \min(\alpha_1, \alpha_2, \dots)$ $\beta_{1+2+\dots} \geq \max(\beta_1, \beta_2, \dots)$

<u>Stepwise criterion</u> Find and merge the segment pair (i, j) that minimises $V_{i,j}$ (= 1 - α).

 $V_{i,j} = Prob(d \le d_{i,j}; H0)$ (= 1 - α).

Constant value region with uniform additive noise

Region
$$R_k \propto N(m_k, \sigma^2)$$

$$\begin{aligned} d_{i,j} &= \left| \mu_{i} - \mu_{j} \right| \\ v_{i,j} &= \text{prob}(d \le d_{i,j}; H0) \\ v_{i,j} &= \int_{-d_{i,j}}^{d_{i,j}} \frac{1}{\sqrt{2\pi} \sigma_{d}} \exp\left(\frac{-x^{2}}{2\sigma_{d}^{2}}\right) dx \\ v_{i,j} &= 2 \operatorname{erf}(d_{i,j}/\sigma_{d}) \\ \text{where} &\sigma_{d}^{2} = \left(\frac{1}{N_{i}} + \frac{1}{N_{j}}\right) \sigma^{2} \end{aligned}$$

Constant value region

$$C_{i,j}^{ward} = \frac{d_{i,j}}{\sigma_d} = \sqrt{\frac{N_i N_j}{N_i + N_j}} \frac{\left|\mu_i - \mu_j\right|}{\sigma}$$

SEGMENTATION OF SAR IMAGE

SAR IMAGE \rightarrow COHERENT SIGNAL (RADAR) \rightarrow INTERFERENCE PATTERN

MULTIPLICATIVE NOISE

Noise is proportional to the amplitude

SAR criterion

Using a Gaussian approximation for large NL value, we have:

$$\sigma_{d}^{2} = (1/N_{i} + 1/N_{j}) \mu_{i+j}^{2}/L$$

$$C_{i,j}^{sar} = \frac{d_{i,j}}{\sigma_d} = \sqrt{\frac{N_i N_j}{N_i + N_j}} \frac{\left|\mu_i - \mu_j\right|}{\mu_{i+j}} \sqrt{\frac{1}{V_i}}$$

The segment dispersion (difference) is divided by the segment mean

IMPORTANT NOISE

PROBLEM WITH THE FIRST MERGES SHAPE CRITERIA NEEDED

SHAPE CRITERIA

Bonding box – perimeter Cp
Bonding box – area Ca
Contour length Cl

New criteria

$$C_{i,j}^{contour} = C_{i,j}^{sar^2} \times Cp^2 \times Ca \times Cl$$

4 regions, 4 looks, 100x100

10 segments, standard criterion

10 segments, shape criterion

standard criterion

1000 Segments

Shape vs standard criterion, 1000 segments

with shape criterion

without shape criterion

ζı

Segments

SHAPE CRITERIA

Bonding box – perimeter Cp
Bonding box – area Ca
Contour length Cl

New criteria

$$C_{i,j}^{contour} = C_{i,j}^{sar^2} \times Cp^2 \times Ca \times Cl$$

Bonding box – perimeter

$$Cp = \frac{perimeter \ of \ S_i \cup S_j}{perimeter \ of \ bonding \ box}$$

Bonding box – area

$$Ca = \frac{area \ of \ bonding \ box}{area \ of \ S_i \cup S_j}$$

Contour length

Lc = length of common part of contours $Lex i = length of exclusive part for S_i$ $Cl = Min\left\{\frac{Lex i}{Lc}, \frac{Lex j}{Lc}\right\}$

segments

segments

1000Seg

ų 20 Ŕ ระวักา เ วาราวไว้

-35= 1 -K 7 ् के ह ~~~~

, ji

Ŕ

lents

SAR image

1000 segments

SAR image

10 K segments

Segments

CONCLUSION

- •Hierarchical segmentation produces goods results
- •Criterion should be adapted to the application
- •The first merges should be done correctly
- •Shape criteria are useful