BeaulieuJM.ca/publi/Bea2001b

SAR Image Enhancement: Combining Image Filtering and Segmentation

Jean-Marie Beaulieu

Computer Science Department Laval University

in collaboration with Canadian Center for Remote Sensing, Ottawa Geomatic Research Center, Laval University

SAR IMAGE \rightarrow COHERENT SIGNAL \rightarrow INTERFERENCE PATTERN

SIGNAL DISTRIBUTION POWER OR INTENSITY EXPONENTIAL DISTRIBUTION $p(I) = \frac{1}{\lambda} Exp\left\{\frac{-I}{\lambda}\right\}$ where $\sigma_I = E(I) = \lambda$

MULTI-LOOK IMAGE

L = NUMBER OF LOOKS INTENSITY FOLLOWS A **GAMMA** DISTRIBUTION

MULTIPLICATIVE NOISE

NOISE IS PROPORTIONAL TO INTENSITY

ADAPTIVE FILTERING

$$\hat{I} = \beta I + (1 - \beta) \bar{I}_{N \times N}$$

- \rightarrow EVALUATE THE REGION HOMOGENEITY
- \rightarrow FROM THE VARIATION COEFFICIENT σ / μ

Signal model $I = R \times U$ Filtering = Estimation of R $\hat{R} = \beta I + (1 - \beta) \overline{I}_{N \times N}$

Lee Filter
$$\beta = 1 - \frac{C_U^2}{C_I^2}$$

Kuan Filter
$$\beta = \frac{1 - C_U^2 / C_I^2}{1 + C_U^2}$$

where
$$\overline{I}_{N \times N} = Mean_{N \times N}(I)$$

 $C_I = \sqrt{Var_{N \times N}(I)} / \overline{I}_{N \times N}$
 $C_U = \sigma_U / \mu_U = 1 / \sqrt{L} ; \mu_U = 1$

Gamma Filter

$$\hat{R} = \begin{cases} \bar{I}_{N} & si \quad C_{I} < C_{U} \\ \frac{b \ \bar{I}_{N} + \sqrt{b^{2} \ \bar{I}_{N}^{2} + 4 \ a \ L \ I \ \bar{I}_{N}}}{2 \ a} & si \quad C_{U} \le C_{I} \le C_{MAX} \\ I & si \quad C_{I} > C_{MAX} \end{cases}$$

where
$$a = (1 + C_U^2) / (C_I^2 - C_U^2)$$

 $b = a - L - 1$
 $C_{MAX} = \sqrt{1 + 2/L}$

Gamma Filter

SAR Image Segmentation

Segmentation and filtering of SAR images are difficult.

⇒ Filtering → could be used as a first step to segmentation

Segmentation → could be used to improve filtering

Spatial Information

 \Rightarrow Filtering \rightarrow uses fixed windows

\Rightarrow Segmentation \rightarrow

- similar pixels are grouped
- homogeneous regions
- data driven

Region growing "filter"

- Selection of a pixel set for averaging
- Grow a region from a central pixel
- Use a region size limit

Region growing "filter"

Extremum Reduction

- Speckle noise has a large range of values
- Reduce range by
 - cutting peaks
 - filling valleys

Extremum Reduction

- Start from local maximum (minimum) values
- Merge with the higher (lower) neighbour
- Stop after N merges
- Replace inside values by the lowest (highest)

Extremum reduction result

Gamma filter

Extremum reduction and Gamma filter

Gamma filter

Region growing and Gamma filter

SAR Image (1-look)

Gamma Filter

SAR Image

Region growing "filter"

Extremum reduction and Gamma filter

Region growing and Gamma filter

Conclusion

- Segmentation techniques could be useful for SAR image filtering
- Use progressive SAR image enhancement