BeaulieuJM.ca/publi/Bea2002

Hierarchical Segmentation of Polarimetric SAR Images

Jean-Marie Beaulieu Computer Science Department Laval University

Ridha Touzi
Canada Centre for Remote Sensing
Natural Resources Canada

Hierarchical Segmentation of Polarimetric SAR Images

- •Hierarchical Image Segmentation
- •As a maximum likelihood estimation problem
- Segmentation of polarimetric images
- •Segment sizes shape constraints
- •Results

Image Segmentation is the division of the image plane into regions

Two basic questions:

- 1- What kind of regions do we want?
 - Homogeneous regions
 - Segment similarity
- 2- **How** can we obtain them?
 - Algorithm design

HIERARCHICAL SEGMENTATION BY STEP-WISE OPTIMISATION

A hierarchical segmentation begins with an initial partition P⁰ (with N segments) and then sequentially merges these segments.

level n+1

level n

level n-1

Segment tree

STEP-WISE OPTIMISATION

- A criterion, corresponding to a measure of segment similarity, is used to define which segments to merge.
- At each iteration, an optimization process finds the two most similar segments and merges them.
- This can be represented by a segment tree, one node per iteration, where only the two most similar segments are merged.

Sequence of segment merges.

SEGMENTATION AS MAXIMUM LIKELIHOOD ESTIMATION

1) need a partition of the image

$$P = \{s_k\}, \quad s_k = \{i\} \subset I$$

2) need statistical parameters

$$\theta = \{\theta_s\}, \quad s \in P$$

$$p(x_i | \theta_s)$$

 x_i are conditionally independent

Given an image $X = \{x_i\}, i \in I$ the likelihood of $\theta = \{\theta_s\}, P$

is
$$L(\theta, P \mid X) = p(X \mid \theta, P)$$

$$L(\theta, P \mid X) = \prod_{i \in I} p(x_i \mid \theta_{s(i)}) \bigg|_{P}$$

The segmentation problem is to find the partition that maximizes the likelihood.

Global search – too many possible partitions.

 θ_s is derived from statistics calculated over a segment s.

The maximum likelihood increases with the number of segments

Can't find the optimum partition with k segments, P_k Too many, except for P_1 and P_{nxn} .

Hierarchical segmentation

 \rightarrow get P_k from P_{k+1} by merging 2 segments.

Stepwise optimization

- examine each adjacent segment pair
- merge the pair that minimizes the criterion

Merging criterion:

merge the 2 segments producing the smallest decrease of the maximum likelihood (stepwise optimization)

Sub-optimum within hierarchical merging framework.

Log likelihood form

$$\ln\left(L(\theta, P \mid X)\right) = \ln\left(\prod_{i \in I} p(x_i \mid \theta_{s(i)})\right) = \sum_{i \in I} \ln\left(p(x_i \mid \theta_{s(i)})\right)$$

Summation inside region

$$\sum_{s \in P} \sum_{i \in s} \ln(p(x_i \mid \theta_s)) = \sum_{s \in P} LML(s)$$

Criterion → cost of merging 2 segments

$$\Delta = LML(s_i) + LML(s_j) - LML(s_i \cup s_j)$$

$$\Delta = \sum_{x \in s_i} \ln \left(p(x \mid \theta_{s_i}) \right) + \sum_{x \in s_j} \ln \left(p(x \mid \theta_{s_j}) \right) - \sum_{x \in s_i \cup s_j} \ln \left(p(x \mid \theta_{s_i \cup s_j}) \right)$$

minimize $|\Delta|$

POLARIMETRIC SAR IMAGE

Multi-channel image – 3 complex elements

$$x = \begin{bmatrix} hh \\ hv \\ vv \end{bmatrix}$$

each element has a zero mean circular gaussian distribution

Complex gaussian pdf (Σ is the covariance matrix)

$$p(x \mid \Sigma) = \frac{1}{\pi^3 |\Sigma|} \exp(-x^* \Sigma^{-1} x)$$

 x^* is the complex conjugate transpose of x

The best maximum likelihood estimate of Σ is the covariance calculated over the region (segment)

$$\hat{\Sigma} = C = \frac{1}{n_s} \sum_{x \in s} x \ x^*$$

 n_s is the number of pixels in segment s

$$C = \frac{1}{n} \begin{bmatrix} \sum hh \ hh^* & \sum hh \ hv^* & \sum hh \ vv^* \\ \sum hv \ hh^* & \sum hv \ hv^* & \sum hv \ vv^* \\ \sum vv \ hh^* & \sum vv \ hv^* & \sum vv \ vv^* \end{bmatrix}$$

LML for a region s is

$$LML(s) = \sum_{x \in s} \ln(p(x \mid C_s)) = \sum_{x \in s} \ln\left(\frac{1}{\pi^3 \mid C_s \mid} \exp(-x^* C_s^{-1} x)\right)$$

$$= \sum_{x \in s} \left[-\ln \pi^3 - \ln|C_s| - x^* C_s^{-1} x\right]$$

$$= -n_s \ln \pi^3 - n_s \ln|C_s| - \sum_{x \in s} x^* C_s^{-1} x$$

$$= -n_s \ln|C_s| - n_s \ln \pi^3 - 3n_s$$

constant term for the whole image

The variation produced by merging 2 segments is

$$\Delta = LML(s_i) + LML(s_j) - LML(s_i \cup s_j)$$

$$= -n_{si} \ln |C_{si}| - n_{sj} \ln |C_{sj}| + (n_{si} + n_{sj}) \ln |C_{si \cup sj}|$$

Hierarchical segmentation:

at each iteration, merge the 2 segments that minimize the stepwise criterion $C_{i,i}$

$$C_{i,j} = (n_{si} + n_{sj}) \ln |C_{si \cup sj}| - n_{si} \ln |C_{si}| - n_{sj} \ln |C_{sj}|$$

SEGMENTATION BY HYPOTHESIS TESTING

Test the similarity of segment covariances $C_i = C_j = C$ - merge segment with same covariance

Use the difference of determinant logarithms as a test statistic

$$C_{i,j} = K \left\{ (n_{si} + n_{sj}) \ln |C_{si \cup sj}| - n_{si} \ln |C_{si}| - n_{sj} \ln |C_{sj}| \right\}$$

With the scaling factor K, the statistic is approximately distributed as a chi-squared variable with 6 degrees of freedom as n_{si} and n_{si} become large.

$$K = 1 - \frac{13}{12} (1/n_{si} + 1/n_{sj} - 1/(n_{si} + n_{sj}))$$

Segmentation by hypothesis testing

Two hypothesis

H0: segments are similar

H1: segments are different

Distributions of the statistic d under H0 and H1

Two types of errors

Type I: not merging similar segments

Type II: merging different segments

α = Prob(Type I errors)β = Prob(Type II errors)

Select the threshold to minimise α or β , but not both simultaneously

In hierarchical segmentation, type II errors (merging different segments) can not be corrected, while type I errors can be corrected later on.

The distribution of H1 and β are unknown. Reduce β by increasing α .

Sequential testing: α will be reduced as segment sizes increase.

$$\alpha_{1+2+...} \leq \min(\alpha_1, \alpha_2, ...)$$

 $\beta_{1+2+...} \geq \max(\beta_1, \beta_2, ...)$

Stepwise criterion

Find and merge the segment pair (i, j) that minimizes $V_{i,j} \ (= 1 - \alpha)$.

$$V_{i,j} = \text{Prob}(d \le d_{i,j}; H0) \quad (= 1 - \alpha).$$

Amplitude values

80 pixels / cell

Correlation – module (0-1)

Correlation – phase $(-180^{\circ} - 180^{\circ})$

vv hv*

hh vv*/ hh hv*/ vv hv*

Amplitude image

Amplitude image

5 pixels / cell

CRITERION FOR SMALL SEGMENTS

The determinant |C| is null for small segments

$$C = \frac{1}{n} \begin{bmatrix} \sum hh \ hh^* & \sum hh \ hv^* & \sum hh \ vv^* \\ \sum hv \ hh^* & \sum hv \ hv^* & \sum hv \ vv^* \\ \sum vv \ hh^* & \sum vv \ hv^* & \sum vv \ vv^* \end{bmatrix}$$

Reduce covariance matrix model for small segments

$$\frac{1}{n} \begin{bmatrix} \sum hh \ hh^* & 0 & \sum hh \ vv^* \\ 0 & \sum hv \ hv^* & 0 \\ \sum vv \ hh^* & 0 & \sum vv \ vv^* \end{bmatrix} \\
\frac{1}{n} \begin{bmatrix} \sum hh \ hh^* & 0 & 0 \\ 0 & \sum hv \ hv^* & 0 \\ 0 & 0 & \sum vv \ vv^* \end{bmatrix}$$

Gradual transition between models

SEGMENT SHAPE CRITERIA

High speckle noise

→ first merges produce ill formed segments

New criteria

$$C_{i,j}^{contour} = C_{i,j}^{polar} \times Cp^2 \times Ca \times Cl$$

Bonding box – perimeter

$$Cp = \frac{perimeter\ of\ S_i \cup S_j}{perimeter\ of\ bonding\ box}$$

Bonding box – area

$$Ca = \frac{area\ of\ bonding\ box}{area\ of\ S_i \cup S_j}$$

Contour length

Lc = length of common part of contours

 $Lex i = length of exclusive part for S_i$

$$Cl = Min \left\{ \frac{Lex i}{Lc}, \frac{Lex j}{Lc} \right\}$$

1000 segments – low resolution

CONCLUSION

- •Hierarchical segmentation produces good results
- •Criterion should be adapted to the application
- •Good polarimetic criterion
- •The first merges should be done correctly