BeaulieuJM.ca/publi/Bea2003d

Segmentation of polarimetric SAR images:

a best estimate partitioning approach

Jean-Marie Beaulieu
Computer Science Department
Laval University

Ridha Touzi
Canada Centre for Remote Sensing
Natural Resources Canada

Segmentation of polarimetric SAR images: a best estimate partitioning approach

-Hierarchical Image Segmentation
-As a maximum likelihood approximation problem
-Segmentation of polarimetric images
-Segmentation of textured images
-Results

Image Segmentation

 is the division of the image plane into regionsTwo basic questions:

1- What kind of regions do we want?

- Homogeneous regions
- Segment similarity

2- How can we obtain them?

- Algorithm design

HIERARCHICAL SEGMENTATION BY STEP-WISE OPTIMISATION

A hierarchical segmentation begins with an initial partition P^{0} (with N segments) and then sequentially merges these segments.
level $\mathrm{n}+1$
level n
level n -1

Segment tree

SEGMENT SIMILARITY MEASURE

Segmentation \rightarrow compare two segments
Classification \rightarrow compare one pixel with one class

Local decision $\longleftrightarrow \rightarrow$ Global segmentation result
Sequence of tests

SEGMENTATION BY HYPOTHESIS TESTING

Test the similarity of segment covariances $C_{i}=C_{j}=C$

- merge segment with same covariance

Use the difference of determinant logarithms as a test statistic

$$
C_{i, j}=K\left\{\left(n_{s i}+n_{s j}\right) \ln \left|C_{s i \cup s j}\right|-n_{s i} \ln \left|C_{s i}\right|-n_{s j} \ln \left|C_{s j}\right|\right\}
$$

With the scaling factor K, the statistic is approximately distributed as a chi-squared variable as \mathbf{n}_{si} and \mathbf{n}_{sj} become large.

SEGMENTATION AS MAXIMUM LIKELIHOOD APPROXIMATION

1) need a partition of the image

$$
P=\left\{s_{k}\right\}, \quad s_{k}=\{i\} \subset I
$$

2) need statistical parameters

$$
\theta=\left\{\theta_{s}\right\}, \quad s \in P
$$

3) need an image probability model

$$
p\left(x_{i} \mid \theta_{s}\right)
$$

x_{i} are conditionally independent

Given an image $X=\left\{x_{i}\right\}, \quad i \in I$ the likelihood of $\theta=\left\{\theta_{s}\right\}, \quad P$
is $\quad L(\theta, P \mid X)=p(X \mid \theta, P)$

$$
L(\theta, P \mid X)=\left.\prod_{i \in I} p\left(x_{i} \mid \theta_{s(i)}\right)\right|_{P}
$$

The segmentation problem is to find the partition that maximizes the likelihood.

Global search - too many possible partitions.
θ_{s} is derived from statistics calculated over a segment s.

The maximum likelihood increases with the number of segments

Can't find the optimum partition with k segments, $\boldsymbol{P}_{\mathrm{k}}$ Too many, except for P_{1} and $P_{\text {nxn }}$.

Hierarchical segmentation
\rightarrow get P_{k} from $P_{\mathrm{k}+1}$ by merging 2 segments.

Stepwise optimization

- examine each adjacent segment pair
- merge the pair that minimizes the criterion

Merging criterion:

merge the 2 segments producing the smallest decrease of the maximum likelihood (stepwise optimization)

Sub-optimum within hierarchical merging framework.

Log likelihood form

$$
\ln (L(\theta, P \mid X))=\ln \left(\prod_{i \in I} p\left(x_{i} \mid \theta_{s(i)}\right)\right)=\sum_{i \in I} \ln \left(p\left(x_{i} \mid \theta_{s(i)}\right)\right)
$$

Summation inside region

$$
\sum_{s \in P} \sum_{i \in s} \ln \left(p\left(x_{i} \mid \theta_{s}\right)\right)=\sum_{s \in P} L M L(s)
$$

Criterion \rightarrow cost of merging 2 segments

$$
\begin{aligned}
& \Delta=\operatorname{LML}\left(s_{i}\right)+\operatorname{LML}\left(s_{j}\right)-\operatorname{LML}\left(s_{i} \cup s_{j}\right) \\
& \Delta=\sum_{x \in s_{i}} \ln \left(p\left(x \mid \theta_{s_{i}}\right)\right)+\sum_{x \in s_{j}} \ln \left(p\left(x \mid \theta_{s_{j}}\right)\right)-\sum_{x \in s_{i} \cup s_{j}} \ln \left(p\left(x \mid \theta_{s_{i} \cup s_{j}}\right)\right)
\end{aligned}
$$

minimize $|\Delta|$

POLARIMETRIC SAR IMAGE

Multi-channel image - $\mathbf{3}$ complex elements

$$
x=\left[\begin{array}{l}
h h \\
h v \\
v v
\end{array}\right]
$$

each element has
 a zero mean circular gaussian distribution

Complex gaussian pdf (Σ is the covariance matrix)

$$
p(x \mid \Sigma)=\frac{1}{\pi^{3}|\Sigma|} \exp \left(-x^{*} \Sigma^{-1} x\right)
$$

x^{*} is the complex conjugate transpose of x

The best maximum likelihood estimate of Σ is the covariance calculated over the region (segment)

$$
\hat{\Sigma}=C=\frac{1}{n_{s}} \sum_{x \in s} x x^{*}
$$

n_{s} is the number of pixels in segment s

$$
\boldsymbol{C}=\frac{1}{n}\left[\begin{array}{ccc}
\sum h h h h^{*} & \sum h h h v^{*} & \sum h h v v^{*} \\
\sum h v h h^{*} & \sum h v h v^{*} & \sum h v v v^{*} \\
\sum v v h h^{*} & \sum v v h v^{*} & \sum v v v v^{*}
\end{array}\right]
$$

$L M L$ for a region s is

$$
\begin{aligned}
\operatorname{LML}(s)= & \sum_{x \in s} \ln \left(p\left(x \mid C_{s}\right)\right)=\sum_{x \in s} \ln \left(\frac{1}{\pi^{3}\left|C_{s}\right|} \exp \left(-x^{*} C_{s}^{-1} x\right)\right) \\
= & \sum_{x \in s}\left[-\ln \pi^{3}-\ln \left|C_{s}\right|-x^{*} C_{s}^{-1} x\right] \\
= & -n_{s} \ln \pi^{3}-n_{s} \ln \left|C_{s}\right|-\sum_{x \in s} x^{*} C_{s}^{-1} x \\
= & -n_{s} \ln \left|C_{s}\right|-n_{s} \ln \pi^{3}-3 n_{s} \\
& \quad \text { constant term for the whole image }
\end{aligned}
$$

The variation produced by merging 2 segments is

$$
\begin{aligned}
\Delta & =\operatorname{LML}\left(s_{i}\right)+\operatorname{LML}\left(s_{j}\right)-\operatorname{LML}\left(s_{i} \cup s_{j}\right) \\
& =-n_{s i} \ln \left|C_{s i}\right|-n_{s j} \ln \left|C_{s j}\right|+\left(n_{s i}+n_{s j}\right) \ln \left|C_{s i \cup s j}\right|
\end{aligned}
$$

Hierarchical segmentation: at each iteration, merge the $\mathbf{2}$ segments that minimize the stepwise criterion $C_{\mathrm{i}, \mathrm{j}}$

$$
C_{i, j}=\left(n_{s i}+n_{s j}\right) \ln \left|C_{s i \cup s j}\right|-n_{s i} \ln \left|C_{s i}\right|-n_{s j} \ln \left|C_{s j}\right|
$$

MULTILOOK IMAGE

For L-look image, a pixel \boldsymbol{k} should be represented by its L-look covariance matrix, Z_{k}
Z_{k} follows a complex Wishart distribution

$$
p\left(Z_{k} \mid \Sigma\right)=\frac{L^{3 L}\left|Z_{k}\right|^{L-3} \exp \left\{-L \operatorname{tr}\left(\Sigma^{-1} Z_{k}\right)\right\}}{\pi^{3} \Gamma(L) \Gamma(L-1) \Gamma(L-2)|\Sigma|^{L}}
$$

The variation produced by merging 2 segments is

$$
\begin{aligned}
\Delta & =\operatorname{MLL}\left(S_{i}\right)+\operatorname{MLL}\left(S_{j}\right)-\operatorname{MLL}\left(S_{i} \cup S_{j}\right) \\
& =L\left(m_{i}+m_{j}\right) \ln \left|C_{S i \cup S j}\right|-L m_{i} \ln \left|C_{S i}\right|-L m_{j} \ln \left|C_{S j}\right| .
\end{aligned}
$$

This is equivalent to the previous criterion where $n=L m \quad$ (m is the number of L-look pixels)

$$
C_{i, j}=\left(n_{s i}+n_{s j}\right) \ln \left|C_{s i \cup s j}\right|-n_{s i} \ln \left|C_{s i}\right|-n_{s j} \ln \left|C_{s j}\right|
$$

TEXTURED IMAGE

Assume that a texture value μ modifies the covariance matrix

$$
Z_{\mathrm{k}}=\mu_{\mathrm{k}} Z_{\mathrm{k} \text {-homogeneous }}
$$

Z_{k} follows a K distribution

$$
\begin{array}{r}
p\left(Z_{k} \mid \alpha, \Sigma\right)=\frac{(\alpha L)^{(3 L+\alpha) / 2} 2\left|Z_{k}\right|^{L-3}\left(\operatorname{tr}\left(\Sigma^{-1} Z_{k}\right)\right)^{(\alpha-3 L) / 2}}{\pi^{3} \Gamma(L) \Gamma(L-1) \Gamma(L-2) \Gamma(\alpha)|\Sigma|^{L}} \\
K_{3 L-\alpha}\left\{2 \sqrt{\alpha L \operatorname{tr}\left(\Sigma^{-1} Z_{k}\right)}\right\}
\end{array}
$$

The maximum log likelihood for one segment is

$$
\begin{array}{r}
M L L(S) \simeq n \frac{3 L+\alpha}{2} \ln (\alpha L)-n \ln (\Gamma(\alpha))-n L \ln (|\Sigma|) \\
+\frac{\alpha-3 L}{2} \sum_{k \in S} \ln \left(\operatorname{tr}\left(\Sigma^{-1} Z_{k}\right)\right) \\
+\sum_{k \in S} K_{3 L-\alpha}\left\{2 \sqrt{\alpha L \operatorname{tr}\left(\Sigma^{-1} Z_{k}\right)}\right\}
\end{array}
$$

Best α and $\Sigma \rightarrow$ Iteration (gradient descent)
Approximation

$$
\begin{aligned}
\Sigma & =\text { segment covariance matrix } \\
\alpha & =1 /\left(\mathrm{CV}_{\mathrm{R}}\right)^{2} \rightarrow \text { Method of Moments }
\end{aligned}
$$

DECOMPOSITION INTO TEXTURE AND SPECKLE

Estimate the texture for each channel $\mu=\left(\mu_{\mathrm{hb}}, \mu_{\mathrm{vv}}, \mu_{\mathrm{hv}}\right)$
-- 5x5 window
Calculate the speckle covariance matrix, speckle $=x-\mu$
The pixel probability model is

$$
p\left(x \mid \Sigma_{\text {speckle }}, \alpha\right)=p\left(x-\mu \mid \Sigma_{\text {speckle }}\right) p\left(\mu_{h h} \mid \alpha_{h h}\right) p\left(\mu_{v v} \mid \alpha_{v v}\right) p\left(\mu_{h v} \mid \alpha_{h v}\right)
$$

Independent texture channels

The maximum log likelihood for one segment is

$$
\begin{aligned}
& M L L=M L L(x-\mu)+M L L\left(\mu_{h h}\right)+M L L\left(\mu_{v v}\right)+M L L\left(\mu_{h v}\right) \\
& \begin{aligned}
M L L(x-\mu) & =\sum_{x \in s} \ln \left(p\left(x-\mu \mid C_{\text {speckle }}\right)\right) \simeq-n \ln \left|C_{s p e c k l e}\right| \\
M L L\left(\mu_{-}\right) & =\sum_{\mu \in s} \ln \left(p\left(\mu_{-} \mid \alpha_{-}\right)\right) \\
& \simeq n(\alpha \ln (\alpha)-\ln (\Gamma(\alpha))-\alpha-\alpha \ln (\bar{\mu}))+(\alpha-1) \sum_{\mu \in s} \ln (\mu)
\end{aligned}
\end{aligned}
$$

SEGMENT SHAPE CRITERIA

High speckle noise
\rightarrow first merges produce ill formed segments

- Bonding box - perimeter Cp
-Bonding box - area
Ca
-Contour length
Cl
New criteria

$$
\mathrm{C}_{\mathrm{i}, \mathrm{j}}^{\text {contour }}=\mathrm{C}_{\mathrm{i}, \mathrm{j}}^{\text {polar }} \times C p^{2} \times C a \times C l
$$

Bonding box - perimeter

$$
C p=\frac{\text { perimeter of } S_{i} \cup S_{j}}{\text { perimeter of bonding box }}
$$

Bonding box - area

$$
C a=\frac{\text { area of bonding box }}{\text { area of } S_{i} \cup S_{j}}
$$

Contour length

CONCLUSION

-Hierarchical segmentation produces good results
-Good polarimetric criteria for homogeneous and textured fields

- Shape criteria are useful

CRITERION FOR SMALL SEGMENTS

The determinant $|\mathbf{C}|$ is null for small segments

$$
\boldsymbol{C}=\frac{1}{n}\left[\begin{array}{lll}
\sum h h h h^{*} & \sum h h h v^{*} & \sum h h v v^{*} \\
\sum h v h h^{*} & \sum h v h v^{*} & \sum h v v v^{*} \\
\sum v v h h^{*} & \sum v v h v^{*} & \sum v v v v^{*}
\end{array}\right]
$$

Reduce covariance matrix model for small segments

$$
\begin{aligned}
& \frac{1}{n}\left[\begin{array}{ccc}
\sum h h h h^{*} & 0 & \sum h h v v^{*} \\
0 & \sum h v h v^{*} & 0 \\
\sum v v h h^{*} & 0 & \sum v v v v^{*}
\end{array}\right] \\
& \frac{1}{n}\left[\begin{array}{ccc}
\sum h h h h^{*} & 0 & 0 \\
0 & \sum h v h v^{*} & 0 \\
0 & 0 & \sum v v v^{*}
\end{array}\right]
\end{aligned}
$$

Gradual transition between models

1000 segments - low resolution

1000 segments

500 segments

200 segments

100 segments

Segmentation by hypothesis testing

Two hypothesis
H0: segments are similar
H1: segments are different

Distributions of the statistic d under H0 and H1

Two types of errors
Type I: not merging similar segments
Type II: merging different segments

$$
\begin{aligned}
& \alpha=\operatorname{Prob}(\text { Type I errors) } \\
& \beta=\operatorname{Prob}(\text { Type II errors) }
\end{aligned}
$$

Select the threshold to minimise α or β, but not both simultaneously

In hierarchical segmentation, type II errors

 (merging different segments) can not be corrected, while type I errors can be corrected later on.

The distribution of H 1 and β are unknown. Reduce β by increasing α.

Sequential testing:

α will be reduced as segment sizes increase.
$\alpha_{1+2+\ldots .} \leq$ minimum $\left(\alpha_{1}, \alpha_{2}, \ldots\right)$
$\beta_{1+2+\ldots} \geq$ maximum $\left(\beta_{1}, \beta_{2}, \ldots\right)$

Stepwise criterion

Find and merge the segment pair (\mathbf{i}, \mathbf{j}) that minimizes $\mathrm{V}_{\mathrm{i}, \mathrm{j}}(=1-\alpha)$.

