- Mean-Shift clustering move every data points toward higher probability density zones (modes) - Density → point count over a window (histogram) - Direction toward higher density - → position of weighted mean (window) #### **MEAN-SHIFT** $$Drad = D(Zi,Zj)^{1/2} / Frad$$ Dspatial = Distance between pixels / Fspatial Weight = EXP [$$-(Drad^2 + Dspatial^2)$$] Mean = weighted pixel mean Fhift_R = $\alpha \text{ value}_R + (1-\alpha) \text{ Mean}_R$ (radiometric value) - Radiometric distance D(Zi,Zj) for PolSar images - Z_k is pixel covariance matrix - Non textured PolSar image - Z_k follows a complex Wishart distribution $$p(Z_k \mid \Sigma) = \frac{L^{3L} |Z_k|^{L-3} \exp\{-L \operatorname{tr}(\Sigma^{-1} Z_k)\}}{\pi^3 \Gamma(L) \Gamma(L-1) \Gamma(L-2) |\Sigma|^L}$$ Log of the likelihood ratio statistic is $$D(Z_{i}, Z_{j}) = 2 \ln \left| \frac{1}{2} (Z_{i} + Z_{j}) \right| - \ln \left| Z_{i} \right| - \ln \left| Z_{j} \right|$$ #### • Distance between pixels → Euclidian distance Gaussian like weight (Fspatial = σ) Weight = EXP [$$-(Drad^2 + Dspatial^2)$$] Limited to a window (11x11) Fhift_R = $$\alpha \text{ value}_R + (1-\alpha) \text{ Mean}_R$$ #### Shifting the pixel position Fhift_p = $\alpha \text{ value}_p + (1-\alpha) \text{ Mean}_p$ (pixel position) Distances between pixels will change - Integrating other distances (texture, shape) - Using weight to define a new attribute $$p_i = (x_i, y_i) \rightarrow \text{pixel position}$$ V_i = position covariance or tensor $$V_i = \sum_j w_{i,j} (p_j - p_i) (p_j - p_i)^t$$ Use V_i ellipse shape (orientation, elongation) Shape indicate edge orientation ### • Using V_i in weight calculation Use S1 measure of Garcia to calculate the difference between V_i and V_j (BMC Evolutionary Biology 2012, 12:222) $$D_V = S1(V_i, V_j)^{1/2} / F_V$$ Weight = EXP[-(Drad² +Dspa² +D_V²)] ## • Shifting the value of V_i Fhift_V = $$\alpha$$ value_V + (1- α) Mean_V Mahalanobis pixel distance Use V_i to calculate Mahalanobis pixel distances Oserrans Manager Control of the Cont Meanshift sigma San Francisco Meanshift sigma # **CONCLUSION** - MeanShift can perform good image filtering. - Position covariance tensor can provide a good textural attribute (ellipse orientation and elongation). - Spatial attribute can be used in MeanShift to preserve edges.