

- Mean-Shift clustering move every data points toward higher probability density zones (modes)
- Density → point count over a window (histogram)
- Direction toward higher density
 - → position of weighted mean (window)

MEAN-SHIFT

$$Drad = D(Zi,Zj)^{1/2} / Frad$$

Dspatial = Distance between pixels / Fspatial

Weight = EXP [
$$-(Drad^2 + Dspatial^2)$$
]

Mean = weighted pixel mean

Fhift_R = $\alpha \text{ value}_R + (1-\alpha) \text{ Mean}_R$ (radiometric value)

- Radiometric distance D(Zi,Zj) for PolSar images
- Z_k is pixel covariance matrix
- Non textured PolSar image
- Z_k follows a complex Wishart distribution

$$p(Z_k \mid \Sigma) = \frac{L^{3L} |Z_k|^{L-3} \exp\{-L \operatorname{tr}(\Sigma^{-1} Z_k)\}}{\pi^3 \Gamma(L) \Gamma(L-1) \Gamma(L-2) |\Sigma|^L}$$

Log of the likelihood ratio statistic is

$$D(Z_{i}, Z_{j}) = 2 \ln \left| \frac{1}{2} (Z_{i} + Z_{j}) \right| - \ln \left| Z_{i} \right| - \ln \left| Z_{j} \right|$$

• Distance between pixels → Euclidian distance

Gaussian like weight (Fspatial = σ)

Weight = EXP [
$$-(Drad^2 + Dspatial^2)$$
]

Limited to a window (11x11)

Fhift_R =
$$\alpha \text{ value}_R + (1-\alpha) \text{ Mean}_R$$

Shifting the pixel position

Fhift_p = $\alpha \text{ value}_p + (1-\alpha) \text{ Mean}_p$ (pixel position)

Distances between pixels will change

- Integrating other distances (texture, shape)
- Using weight to define a new attribute

$$p_i = (x_i, y_i) \rightarrow \text{pixel position}$$

 V_i = position covariance or tensor

$$V_i = \sum_j w_{i,j} (p_j - p_i) (p_j - p_i)^t$$

Use V_i ellipse shape (orientation, elongation)

Shape indicate edge orientation

• Using V_i in weight calculation

Use S1 measure of Garcia to calculate the difference between V_i and V_j

(BMC Evolutionary Biology 2012, 12:222)

$$D_V = S1(V_i, V_j)^{1/2} / F_V$$
Weight = EXP[-(Drad² +Dspa² +D_V²)]

• Shifting the value of V_i

Fhift_V =
$$\alpha$$
 value_V + (1- α) Mean_V

Mahalanobis pixel distance

Use V_i to calculate Mahalanobis pixel distances

Oserrans Manager Control of the Cont

Meanshift

sigma

San Francisco

Meanshift

sigma

CONCLUSION

- MeanShift can perform good image filtering.
- Position covariance tensor can provide a good textural attribute (ellipse orientation and elongation).
- Spatial attribute can be used in MeanShift to preserve edges.