BeaulieuJM.ca/publi/Bea2019b

EFFICIENT HIERARCHICAL CLUSTERING FOR POLSAR IMAGE ANALYSIS

Jean-Marie Beaulieu

Hierarchical clustering is hard
large computing time

Could be a useful tool
with a fast implementation

- Iterative Clustering
- Move group centers (K-means algorithm)
- Fixed number of groups

K-Means: Iterative Clustering

Calculate the distances between pixels and centers

M centers

Number of operations

- Hierarchical clustering
- Sequential merging of clusters
- Merge the best pair
- Represented by a tree
- Step Wise Optimization

Hierarchical Clustering

Calculate the distances between groups

N groups

Number of operations
$\mathrm{N} \times \mathrm{N}$ (by iterations) $\times(\mathrm{N}-1)$ iterations $\approx \boldsymbol{\alpha} \mathrm{N}^{3}$

$$
10^{6} \times 10^{6} \times 10^{6} \rightarrow 10^{18} \rightarrow 1,000,000 \text { Tera op }
$$

Hierarchical Clustering

Update of Distances

N groups

Number of operations

$$
\begin{array}{r}
N \times N \text { (initialization) }+\sum_{n=N} n \approx \alpha N^{2} \\
10^{6} \times 10^{6} \rightarrow 10^{12} \rightarrow 1 \text { Tera op }
\end{array}
$$

Hierarchical Clustering

Update of Distances

Number of operations

$$
\begin{aligned}
& \mathrm{N} \times \mathrm{N} \text { (initialization) }+\sum_{\mathrm{n}=\mathrm{N}}^{2} \mathrm{n} \approx \boldsymbol{\alpha} \mathrm{~N}^{2} \\
& 10^{6} \times 10^{6} \rightarrow 10^{12} \rightarrow 1 \text { Tera op }
\end{aligned}
$$

N groups

Number of operations
$N \times N$ (initialization) $+\sum_{n=N}^{2} n \approx \alpha N^{2}$
Memory space
$N \times N \rightarrow 10^{6} \times 10^{6} \rightarrow 10^{12} \rightarrow 1$ Tera values

- Non textured multi-look Polsar image
- Z_{k} follows a complex Wishart distribution

$$
p\left(Z_{k} \mid \Sigma\right)=\frac{L^{3 L}\left|Z_{k}\right|^{L-3} \exp \left\{-L \operatorname{tr}\left(\Sigma^{-1} Z_{k}\right)\right\}}{\pi^{3} \Gamma(L) \Gamma(L-1) \Gamma(L-2)|\Sigma|^{L}}
$$

- Distance between groups $\mathbf{D}(\mathbf{G i}, \mathbf{G j})$
- Log of the Likelihood Ratio

$$
D\left(G_{i}, G_{j}\right)=\left(n_{i}+n_{j}\right) \ln \left|\hat{\Sigma}_{G i \cup G j}\right|-n_{i} \ln \left|\hat{\Sigma}_{G i}\right|-n_{j} \ln \left|\hat{\Sigma}_{G j}\right|
$$

- Attributes or feature space (many dimensions)
- Radiometric information (or color/spectral)

$$
\begin{gathered}
\text { Radar 1-look } \\
x=\left[\begin{array}{l}
h h \\
h v \\
v v
\end{array}\right] \\
\text { Radar multi-look } \\
Z=\left[\begin{array}{|ccc}
\overline{h h h h^{*}} & \overline{h h h v^{*}} & \overline{h h v v^{*}} \\
\overline{h v h h^{*}} & \overline{h v h v^{*}} & \overline{h v v v^{*}} \\
\frac{v v h h^{*}}{v v h v^{*}} & \overline{v v v v^{*}}
\end{array}\right]
\end{gathered}
$$

- Spatial information - position in the image
- Clustering -- distance between points $\mathbf{D}(\mathbf{G i}, \mathbf{G j})$
- Segmentation -- only adjacent regions

Finding the Minimum

HeapSort sort tree $-\propto \mathrm{N} \log _{2} \mathrm{~N}$
 20 Mega

The minimum indicate which group to merge and it is merged with its best neighbor

Do not need to keep and store the distance matrix

Delayed Update of the neighbors

when a group is selected as the minimum
\rightarrow check if already merged
\rightarrow remove or update (2 to 5 factor)

Fast Pre-Selection

Fast Testing \rightarrow remove 90\% to 95\% of distance calculations Thresholding \rightarrow ratio $|h h|_{\mathbf{i}} /|\mathrm{hh}|_{\mathbf{j}},|h v|_{\mathbf{i}} /|\mathrm{hv}|_{\mathbf{j}}$ et $|\mathrm{vv}|_{\mathbf{i}} /|\mathrm{vv}|_{\mathbf{j}}$

Lists of the Closer Neighbors for the merging steps only

Grid for Group Selection

 speedup list initialization

Lists of the Closer Neighbors

Calculation of distances only for closer neighbors during the merging steps $\propto \mathrm{M} \mathrm{N}$
large initialization time $\propto N^{2}$

Grid for Group Selection

Subspace of attributes divided into cells (5D, $8 \times 8 \times 8 \times 8 \times 8$)

- Discretization \rightarrow index (no) of the cell
- Cell $\quad \rightarrow$ hold a linked list of groups (pointer)

Search for the closer neighbors

- Inspect cells inside a window ($3 \times 3 \times 3 \times 3 \times 3$)
- Inspect less groups, but better candidates

Computing Time (CPU)

Image size	segmen- tation	grid	selection + list	selection	list	no list
$\mathbf{3 0 0 \times 4 0 0}$	0 s 400 ms	15 s 200 ms	$2 \min 50 \mathrm{~s}$	8 min 21 s	18 min 36 s	42 min 20 s
$\mathbf{6 0 0 \times 4 0 0}$	0 s 830 ms	31 s 500 ms	$11 \min 31 \mathrm{~s}$	$35 \min 18 \mathrm{~s}$	74 min 42 s	177 min 29 s
$\mathbf{6 0 0 \times 8 0 0}$	1 s 780 ms	1 min 7 s 400 ms	$35 \min 3 \mathrm{~s}$			
$\mathbf{1 0 0 0 \times 1 0 0 0}$	3 s 860 ms	$2 \min 31 \mathrm{~s} 300 \mathrm{~ms}$				

Omin $30 \mathrm{~min} \quad 60 \mathrm{~min} \quad 90 \mathrm{~min} \quad 120 \mathrm{~min} \quad 150 \mathrm{~min} 180 \mathrm{~m}$

Computing Time (CPU)

Computing Time (CPU)

Image size	segmentation	grid	selection + list	selection	list	no list
300x400	Os 400 ms	15s 200 ms	2 min 50 s	8 min 21 s	18 min 36 s	42 min 20 s
600x400	Os 830 ms	31 s 500 ms	11 min 31 s	35 min 18 s	74 min 42 s	177 min 29 s
600x800	1s 780 ms	1 min 7 s 400 ms	35 min 3 s			
1000x1000	3s 860 ms	2 min 31 s 300 ms				

Conclusion

Hierarchical clustering is hard large computing time

Become a useful tool with a fast implementation

Should know when and how to use it

Conclusion

Hierarchical clustering is hard large computing time

Become a useful tool with a fast implementation

Should know when and how to use it

