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Could be a useful tool  
with a fast implementation
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• Iterative Clustering  
• Move group centers  (K-means algorithm) 
• Fixed number of groups 



K-Means: Iterative Clustering
Calculate the distances between pixels and centers 

Number of operations 

      M × N  (by iterations)  ×   L iterations  ≈  L M N 

 10 centers    1,000,000 pixels       10 iterations ➜  108 ➜  100 M op



• Hierarchical clustering  

• Sequential merging of clusters 
• Merge the best pair 

• Represented by a tree 

• Step Wise Optimization



Number of operations 

      N × N  (by iterations)  ×   (N-1) iterations  ≈  𝜶 N3 

  106 × 106 × 106   ➜    1018    ➜  1,000,000 Tera op

Hierarchical Clustering
Calculate the distances between groups 
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Hierarchical Clustering
Update of Distances 

Number of operations 

      N × N  (initialization)  +                 ≈    𝜶 N2 

  106 × 106   ➜    1012        ➜  1 Tera op
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Hierarchical Clustering
Update of Distances 

Number of operations 

      N × N  (initialization)  +                 ≈    𝜶 N2 

  106 × 106   ➜    1012        ➜  1 Tera op
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Number of operations 

      N × N  (initialization)  +                 ≈    𝜶 N2 

Memory space  
        N × N  ➜  106 × 106   ➜    1012        ➜  1 Tera values
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• Non textured multi-look Polsar image   
• Zk follows a complex Wishart distribution
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• Distance between groups D(Gi,Gj)  
• Log of the Likelihood Ratio 



• Attributes or feature space (many dimensions) 

• Radiometric information  (or color/spectral)
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• Spatial information - position in the image 

• Clustering -- distance between points D(Gi,Gj) 

• Segmentation  -- only adjacent regions
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Finding the Minimum
HeapSort sort tree — ∝  N log2N   

Best 
Neighbor

HeapSort tree 

log2N

Minimum (Top) 

father < 2 sons 

The minimum indicate which group to merge and

it is merged with its best neighbor 


Do not need to keep and store the distance matrix    1 Tera

20 Mega



Delayed Update of the neighbors

when a group is selected as the minimum

➜ check if already merged 

➜ remove or update (2 to 5 factor) 

Best 
Neighbor

HeapSort tree 

log2N

Minimum (Top) 

father < 2 sons 
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Fast Pre-Selection
Fast Testing ➜ remove 90% to 95% of distance calculations


Thresholding ➜ ratio |hh|i/|hh|j, |hv|i/|hv|j et |vv|i/|vv|j

Lists of the Closer Neighbors

Grid for Group Selection 
for the merging steps only 

speedup list initialization  



Lists of the Closer Neighbors
Calculation of distances only for closer neighbors 


during the merging steps  ∝ M N  

large initialization time ∝ N2
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Lists of the Closer Neighbors

Initialization  ∝ N2 Fusions ∝ c M N

M = 25 ou 50

c=5, delayed update
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Subspace of attributes divided into cells (5D, 8×8×8×8×8)

• Discretization ➜ index (no) of the cell 

•   Cell                 ➜ hold a linked list of groups (pointer)

Search for the closer neighbors 

•   Inspect cells inside a window (3×3×3×3×3)

•   Inspect less groups, but better candidates  

Grid for Group Selection 

Subspace

Discretization
Linked list  
of groups 

first

Grid
Search 
Window Group 

number 
table 
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size x 2 ➜ time x 4  

8 s for fusion
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Computing Time (CPU)

size x 2 ➜ time x 2  

grid/seg ➜ factor of ~50  
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Conclusion

Hierarchical clustering is hard 
large computing time 

Become a useful tool  
with a fast implementation 

Should know when and how to use it 





10k segments



200 groups



50 groups



20 groups



original 2 rounds, 200 groups



Conclusion

Hierarchical clustering is hard 
large computing time 
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with a fast implementation 
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