Bea1989a - Jean-Marie Beaulieu 19-08-23 20:48

Jean-Marie Beaulieu

[BeaulieuJM.ca/publi/Beal989a]

Hierarchy in Picture Segmentation: a Stepwise Optimization Approach

Authors: Beaulieu Jean-Marie, Moris Goldberg
Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence

1989, vol. 11, issue 2, p. 150—163

ISBN: 0162-8828
URL: https://ieeexplore.ieee.org/document/16711
DOIL: 10.1109/34.16711

Abstract: A segmentation algorithm based on sequential optimization which produces a hierarchical decomposition
of the picture is presented. The decomposition is data driven with no restriction on segment shapes. It can
be viewed as a tree, where the nodes correspond to picture segments and where links between nodes
indicate set inclusions. Picture segmentation is first regarded as a problem of piecewise picture
approximation, which consists of finding the partition with the minimum approximation error. Then,
picture segmentation is presented as an hypothesis-testing process which merges only segments that
belong to the same region. A hierarchical decomposition constraint is used in both cases, which results in
the same stepwise optimization algorithm. At each iteration, the two most similar segments are merged by
optimizing a stepwise criterion. The algorithm is used to segment a remote-sensing picture, and illustrate
the hierarchical structure of the picture

‘““‘Hierarchy in Picture Segmentation: a Stepwise Optimization Approach,”

Beaulieu Jean-Marie, Moris Goldberg,

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, iss. 2, p. 150—-163, 1989.
[Bibtex]

DOWNLOAD from the Publisher

© 2004 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/ republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

INSPEC Accession Number: 3383939

Date of Publication : Feb. 1989

Date of Current Version : 06 aolit 2002

Issue Date : Feb. 1989

Sponsored by : IEEE Computer Society Publisher: IEEE


https://BeaulieuJM.ca/
https://BeaulieuJM.ca/publi/Bea1989a
javascript:void(0)
https://ieeexplore.ieee.org/document/16711
https://ieeexplore.ieee.org/document/16711
http://dx.doi.org/10.1109/34.16711

HIERACHY IN PICTURE SEGMENTATION :

A STEP-WISE OPTIMIZATION APPROACH

Submitted to IEEE Transactions on

Pattern Analysis and Machine Intelligence

by: Jean-Marie Beaulieu,
National Research Council of Canada,
Ottawa, Ontario, Canada, K1A-0RS8.

Morris Goldberg,
Department of Electrical Engineering,
University of Ottawa,
Ottawa, Ontario, Canada, KIN-6N5.

JUNE 1986 / APRIL 1987

ABSTRACT

This paper presents a segmentation algorithm based upon
sequential optimization which produces an hierarchical
decomposition of the picture. The decomposition 1is data
driven with no restriction on segment shapes. It can be
viewed as a tree where the nodes correspond to picture
segments and where links between nodes indicate set
inclusions. Picture segmentation is first regarded as a
problem of piece-wise picture approximation, which consists
in finding the partition with the minimum approximation
error. Then, picture segmentation is presented as an
hypothesis testing process which merges only segments that
belong to" a same region. A hierarchical decomposition
constraint is used in both cases, which results into the
same step-wise optimization algorithm. At each iteration,
the two most similar segments are merged by optimizing a
"step-wise criterion". The algorithm is employed to
segment a remote sensing picture, and illustrate the

hierarchical structure of the picture.
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1 - INTRODUCTION

Picture segmentation often constitutes the low-level
processing stage of a picture analysis system [3]. An
imége is thus segmented into regions that roughly
correspond to objects, surfaces, or parts of objects of the
scene. The high-level stage 1is then devoted to the
interpretation of these regions. However, other low level
processes can also be used such as the edge detection.
This assumes that the low—lével process has no a priori
knowledge about the objects in a scene, and would be able
to deliver a "plausible" output to the high-level process.
It should be noted that the distinction between the two
levels of analysis is primarily in terms of the knowledge
available to each. Whereas the interpretation system uses
domain specific knowledge about the contents of the scene,
the low-level segmentation stage employs general purpose
models that contain knowledge about images and grouping
criteria that are independent of the scene under analysis.

Picture segmentation goals can be easily defined in
high-level (interpretation) terms, such as the segmentation
of the image into regions that correspond to objects in the
scene, or the isolation of a particular object from the
background (1], [8]. Goal definitions strictly applicable
to the low-level have been rather imprecise. For example,
a segmentation can be defined as a partition of the image
into regions that are "uniform” and that bear "contrast" to
their adjacent neighbours. Uniformity and contrast are
measured in terms of a set of low-level features that can
be evaluated over the image; for example, the average grey



level intensities of the regions (191, ([12], [10].

) In order to give picture segmentation a more sound
basis, the segmentation goal should be precisely defined;
picture segmentation must be presented and analyzed as a
mathematical problem. Using computational and mathematical
theories, algorithms that solve this problem can then be
analyzed and evaluated. An analogous situation is found in
pattern recognition, where the clustering approach has been
presented as a mathematical problem ([11], [34]. Let
(vili=1...n) be a set of pattern samples, then pattern
clustering can be regarded as finding the partition of the
set into m sub-sets, Vk' k=1...m, that minimizes the
overall intra-cluster variance:

- 2
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vien,

where My is the mean value of the sub-set (or cluster) Vi
Other measures can also be used to define well formed
clusters. However, the intra-cluster variance is simple
and yet captures the basic aspect of clusters, i.e. compact
sets of points with large distances between clusters. A
similar approach may be useful in picture segmentation;
however, the resulting mathematical problems must take
account of the spatial aspects that characterize the
picture segmentation task.

Mathematical analysis techniques could, then, be
applied to picture segmentation. Hence, it is noted that
low-level vision problems are often ill-posed [27]}, [32].
To make them well posed, generic constraints on the problem
must be introduced. These attempt to force the solution to
lie in a subspace of the solution space, where it is well

posed (33], [27]. Useful constraints have been proposed
for edge detection [27]), [21], for surface reconstruction
[32], (6]}, and for image restoration [13]. The way to

constrain a segmentation algorithm in order to obtain a

unique, robust and reliable solution, is not evident. At
first glance, it seems that such constraints can only be
introduced at the high-level stage of picture analysis. In
this case, a feedback path from the high-level stage to the
picture segmentation stage must be introduced. The

high-level stage therefore guides the segmentation stage
through the set of possible partitions in order to find the
unique partition that meets the constraints [22], [24],
[18}.

One important generic constraint, that can be employed,
is the hierarchical structure of the picture [31], [30]. A
hierarchical structure means that the picture can be
divided into components, corresponding for example to scene
objects, which can then be divided into sub-components
corresponding to object sub-parts. This hierarchical
decomposition can be represented by a tree where the nodes
correspond to picture regions and where links between nodes
indicate set inclusions. The hierarchical levels could be
related to the resolution levels: a region, which is higher
in the hierarchy than its sub-parts, 1is also larger than
its sub-parts. Hence, higher 1level regions could be
discerned at a coarser resolution than their sub-parts.
However, a region hierarchy could be more than just a
multiresolution representation of the picture (also named
regular hierarchy or pyramid [30]). In a data driven
decomposition, a criterion is used to order the regions,
i.e. to decide in which order the regions (parts) are
merged to produce higher 1level regions (objects) (see
conceptual hierarchies in [2]). Thus, the hierarchical
structure is only one aspect of a picture model, the other
aspects involve the ordering criterion of the regions.
Hence, for example, a textured image could require a
complex picture model resulting in a complex «criterion for
the region ordering.



This paper shows how a hierarchical structure can be
effectively exploited to constrain picture segmentation
problems. Two picture segmentation problems are
considered. First, following a structural approach, the
picture segmentation is regarded as a problem of piece-wise
picture approximation which consists in finding the
partition with the minimum approximation error. Then,
using a statistical approach, the picture segmentation is
presented as an hypothesis testing process which merges
only segments that belong to the same region. In each
case, the segmentation problem is precisely defined, and an
algorithm, that solves this problem while satisfying the
hierarchical constraint, is derived.

The analysis of both problems results in a segmentation
algorithm based upon sequential optimization and which
produces a hierarchical decomposition of the picture. The
algorithm starts with an initial picture partition, and at
each iteration, merges two segments. An optimization
process is used to select the segment pair that minimizes a
"step-wise criterion”, ci,j’ corresponding to the cost of
merging the segment Si with the segment Sj’ It 1is shown
that the algorithm is a valuable tool, and produces good
segmentation results.

This algorithm can be adapted to different picture
segmentation applications. However, appropriate picture
models should be used in order to obtain good results.
Selection of an appropriate model for a given application
is a difficult problem, and is not discussed here. This
paper shows how the step-wise criterion could be derived
from the used picture model. Two classes of picture models
are examined: the global optimization and picture
approximation approach and the hypothesis testing approach.
Simple illustrative examples are given, and indications for
the wutilization of more complex picture models are
provided. Moreover, the relation between the picture
approximation and the hypothesis testing approaches is

illustrated by using a similar picture model in both cases,
which results in a similar step-wise «criterion. Following
a statistical approach, picture partition can be presented
as a best estimate problem, which can be rewritten as a
picture approximation problem as shown in the appendix.

In the next section, the Hierarchical Step-Wise
Optimization algorithm (HSWO) is described in detail. The
third section considers the problem of piece-wise picture
approximation. The step-wise optimization (HSWO) algorithm
is then derived from the global optimization problem by the
introduction of a hierarchical structure constraint. In
the fourth section, picture segmentation is regarded as an
hypothesis testing process which merges two segments only
if they belong to the same region. It is shown how the
probability of error can be minimized in a step-wise
fashion. The last section illustrates the operation of the
HSWO algorithm upon remote sensing pictures, and shows how
the hierarchical structures of the pictures are extracted.



2 - A HIERARCHICAL PICTURE SEGMENTATION ALGORITHM

A segment hierarchy can be represented by a tree [25],
[36] (see Fig. 2.1). In a tree, segments at lower levels
are joined to form segments at higher levels. The ith node
at the tth level of the tree corresponds to the segment Sz.
The links between nodes indicate set inclusion. Hence, a

link between a segment S;+1 (ancestor or parent) and its

disjoint sub-parts Si (descendents or sons) indicates that

S; [ S§+1. The root of the tree corresponds to I the whole

picture, and the leaves to pixels. A picture partition, P,
therefore corresponds to a node set {Sl,Sz...sn}, called a
node cutset, which is the minimal set of nodes separating
the root from all the leaves [16].

\

74"

a) b)

Fig. 2.1 : Segment hierarchy and segment tree.

This section first describes a hierarchical
segmentation algorithm based upon step-wise optimization,
and discusses its efficient implementation. Then, the
proposed algorithm is compared with previous hierarchical
segmentation algorithms based upon predicate equations.

2.1 - The Hierarchicai Step-Wise Optimization algorithm:

A hierarchical segmentation algorithm inspired from
hierarchical data clustering and based upon step-wise
optimization is now presented (351, [29], [28]. In a
merging scheme, a hierarchical clustering starts with N
clusters corresponding to each of the N data points, and
sequentially reduces the number of clusters by merging. At
each iteration, the similarity measures d(Ci,Cj), are
calculated for all clusters pairs (Ci'cj)’ and the clusters
of the pair that minimizes the measure are merged. This
merging is repeated sequentially until the required number
of clusters is obtained.

An important limitation of the hierarchical clustering
approach is its excessive computing time for large data
set. If there are N clusters, then the similarity measure
for Nx(N-1) possible cluster pairs must be calculated. In
picture segmentation, however, only adjacent segments can
be merged, reducing the number of potential segment pairs
per iteration to NxM, where N is the number of segments,
and M the average number of neighbours per segment. M is
usually small ( 4 £ M < 8 ) and is quite independent of N.
Furthermore, a segment merge affects only the surrounding
segments, and only the pairs involving those segments need
to be modified or updated. Thus, only a limited number of
new segment pairs must be considered at each iteration.
Note that this gain of computing efficiency is only
obtained for agglomerative and not divisive hierarchical
segmentation.



The Hierarchical Step-Wise Optimization algorithm
(HSWO) which employs a sequence of optimization processes
to produce a hierarchical ‘segmentation is now presented.
It starts with an initial picture partition,
PO=(sl,Sz,...Sn}, and at each iteration, merges two
segments to yield a segment hierarchy. An optimization
process is used to select the segment pair that minimizes a
"step-wise criterion” Ci,j corresponding to the cost of
merging Si with Sj' The variables involved in the
algorithm are as follows:

1) Bi’ the set of the segments adjacent to Si’ called the
neighbourhood,

2) Di’ the parameters that describe the segment Si’ e.g.
the segment mean and size, and

3) Ci'j=C(Di,Dj), the cost of merging segment Si with Sj,
where Sj is contained in Bi‘

The choice for the step-wise criterion and the stopping
condition depends upon the particular application; examples
are given in the following sections.

II

The algorithm consists of the following steps:

Initialization:

0

i) P = {Sl,SZ,...S 1 (initial partition)

n
ii) k=0 and m=n

iii) calculate Di and Bi for V S.l € P0

iv) calculate CS = { Ci,j | Sj € By and i > j }

- Merge the two most similar segments:

i) k=k+1 and m=m+ 1
ii) find C = Minimum( C, . )
urv C; .€CS i3
]
A k-1 —_—
iii) P~ = (P kJ{Sml ) f\{Su,SV}

iv) calculate Dm from Du and Dv
_ —_—t
v) B = (B UB_ ) N{5,5}

1€By Bj = (Bj v {5 hH N {SU.SV)

+

. _ — +
vii) Cs = ( CS L!{Cm'jISjGBm} ) f\[Ci'jIl,j-u or v}

[II - Stopping condition:

Stop if no more mergers are required.
Otherwise, go to step II.

[3

Taking the intersection with the complement
to removing those elements from the set.

corresponds



An initial picture partition, P0={Sl,82,...sn}, should
be first defined with strictly homogeneous segments; for
example, each initial segment could contain only one pixel.
The initialization step then calculates the

criteria for each pair of adjacent

step-wise
and Sj'
of merging the two
of the
squared errors around the segment means could be used.

At each iteration, the {Su,Sv}, which
minimizes the step-wise criterion is found and merged to

segments, Si
The criterion corresponds to the cost
sum of the

segments. For example, the increase

segment pair,
criterion values and

Steps II and III are
repeated until the stopping condition is satisfied.

produce a new segment, S . The

m
neighbour sets are then updated.

The algorithm is designed so as to reduce the computing
time. In the initialization step, the computing time is a
the number of initial
segments and the number of neighbours per segment. On the
short; the

time is mainly a function of the number

function of the picture size,

other hand, the iterative steps are computing

of neighbours of

S . The number of iterations depends upon the number of

m
initial and final segments, each iteration reducing by one

the number of segments. However, the algorithm requires
substantial temporary memory space to store the current
descriptive parameters, neighbour sets and criterion

values.

10

2.2 - Step-wise optimization versus logical predicates:

This section compares the usual approach for
aierarchical segmentation, based wupon logical predicate
aquations (LPE), with the HSWO algorithm. In LPE-based
algorithms, logical predicate equations are used to define
-he desired picture partition P=lsl,82...sn} [36]:

Prd1 : Q(Si) = true for all i (2.2-1)
Prd2 : Q(Siklsj) = false

for all i#j and Si adjacent to Sj

vhere, Si represents a segment or a region. The logical

sredicate Q(.) is used to express the requirements that all

segments, S of a partition P must satisfy.

il
The predicate equations Prd1 and Prd2 can therefore be

regarded as the definition of a node cutset. A merging
scheme starts with small segments Si (or pixels) which
satisfy Prdl, and proceeds to satisfy Prd2 by region

nerging. It starts from the leaves of the tree, and climbs

1p the tree until it meets nodes S;+1 (=S§L}S§) for which

:he predicate values are false, Q(S}L}S§)= false. Thus, S}

and Sg are in the node cutset, and Prd2 is used as the
stopping criterion.

The logical predicate, Q(Szh)sg), can be considered as
T
v

J
no more

in evaluation of the similarity of S} and S
segment merging

meaning that

stops when there are similar

segments. Thus, Brice and Fennema [7] use two heuristics,

ased upon information from the segment boundaries, to

swvaluate the similarity of two segments. The phagocyte

leuristic guides the merging of regions in such a way as to
smooth or shorten the

resulting boundary. The weakness

leuristic merges two regions if a prescribed portion of

11



their common boundary is weak.
Horowitz and Pavlidis [16]
segmentation approach based upon the

propose a split-and-merge
data

The logical predicate, Q(Si), is regarded as an

pyramidal
structure.
if the

than a threshold
level T of

evaluation of segment homogeneity: Q(Sz) is true

segment approximation error is smaller
value. The process begins at an intermediate
the tree, (SE).

segment merging or

This node cutset will be moved upward by
splitting, until the
segments of the node cutset satisfy Prd1 and Prdz.

downward by

The HSWO algorithm operates in a more global and
gradual manner than LPE-based algorithms. The global
aspect of the HSWO algorithm results from the examination

of all segment pairs, (Si,Sj), in order to find the minimum
while the LPE algorithms consider only two
The step-wise optimization

segments
that
context

Ci,j;
at a time.
the HSWO

before merging two segments.

The step-wise optimization rule also

rule implies

algorithm considers the whole picture
implies that the
most similar segments are merged first. The HSWO algorithm
starting with the
This

gradually merges the segments, ones

having the smallest Ci 3 values. gradual aspect is
’

not possible in the LPE algorithms where only two states

are considered: the true state for similar segments and the
false state when segments are not similar.
HSWO

one partition, but a

The gradual aspect also means that the algorithm

can be used to produce not Just
sequence of partitions from one picture. Moreover, it will
Section 5 that the
reflect the hierarchical structure of the picture: in the

initial partitions small details and objects in the

be seen in sequence of partitions

picture

are preserved, while the most important components

This
that a

only
latter
partitions carries useful

sequence of
high

remain in the partitions.

information level

12

orocess (interpreter) may exploit in order to select the
nost appropriate partition from the sequence.

In the section, the
approximation approach to segmentation [25] is
and the HSWO algorithm is

hierarchical

next piece-wise picture
considered,
derived from this optimization

oroblem by imposing a structure constraint.
In section 4, the picture segmentation is
and it is

reduces the

regarded as an
shown that the
probability of

aypothesis testing process,

step-wise optimization rule

srror in hierarchical segmentation.

13



3 - OPTIMIZATION AND SEGMENT HIERARCHY

A piece-wise polynomial approximation is often used to
represent a picture. The approximation error can then be
employed as a global criterion G(P), and an optimization
process can be used to find the partition that minimizes
this criterion. It 1is shown that the

step-wise optimization (HSWO) algorithm constitutes an

hierarchical

interesting sub-optimal approach to the global optimization
problem. The segment hierarchy assumption reduces the
search space, while the step-wise optimization assures that
A detailed
description of the algorithm for the constant piece-wise

each iteration optimizes the global criterion.

approximation case is given, and its operation is

illustrated by a simple example.

3.1 - Piece-wise picture approximation:

A picture can be regarded-as a two dimensional function
f(x,y), where (x,y)€I, 1 being the picture plane. A
picture partition P divides the picture plane I into n
regions, sl’SZ""Sn' Let fi(x,y) designate the pixel
values for the region Si, fi(x,y)=f(x,y) for (x,y)esi.
Then, each region Si can be approximated by a polynomial

function, ri(x;y), [1s1, (161, (251,

£, (x,y) = rj(xy) = > ag g WP 9
(p,q) €T (3.1-1)

where T is the set of (p,q) pairs employed to define the

terms of the polynomial function, ap q (x)p (y)q. The
’

approximation error for each segment can then be calculated

by the sum of the squared deviations:

(x,¥) Esi

( £(x,y) - ri(x,y) )2
(3.1-2)

Once the segment Si is given, the coefficients a; q
’
that minimize H(Si) can be calculated and must yield the

best polynomial approximation for Si' The minimization of

H(Si) implies:

a’; -0 , for (p,q) € T (3.1-3)
p.9q
This can be rewritten as follows:
I’ '
Y ape, g Y, PP T - Yty 0P
p',q (x,y) (x,y)
(3.1-4)

for (p, q) e T

This is a linear system with m equations and m unknowns, m
being the number of allowed pairs (p,q) i €.9., if T =
{(0,0), (0,1) and (3,0)} then m=3. The
that minimize H(Si) can be obtained by

polynomial
coefficients a;,
solving this linear system. However, a unique solution may
not result; for example, when the number of pixels in Si is

smaller than m, the number of coefficients.

15



Having defined the segment approximation problem, the

problem of picture approximation is now considered. Once

a picture is divided into segments Sl'SZ""Sn’ each can be

approximated, and a picture approximation, r(x,y), results
from the concatenation of the piece-wise approximations
ri(x,y):
rl (x,y) ' if (x,y) € Sl
" ”
r (x,y) = " "
.1-5
r (x,y) ' if (x,y) € 5 3 )
The approximation error for the whole picture is,
consequently:
s (e = D Hs) (3.1-6)
Sie P
where P={Sl,32,...sn}. The minimum value for G results
necessarily from the sum of the minimum values for H(Si)'
where H(Si)=Hmin(Si). The picture approximation problem

consists then in finding the partition P that minimizes the
criterion can
[16] wuse

global criterion G. Other forms of global

also be used; for example, Horowitz and Pavlidis
the Chebyshev (min-max) norm.

The importance of the number of
minimization of G(P) must be stressed. The
Gmin(P) is
number of

segments n in the
minimum value
monotonically non-increasing with increasing
segments for P.

Therefore, a picture

approximation problem consists in finding the partition P

n
such that
G(Pn) = Mé? { G(Pa) }
n (3.1-7)

where Pn and P'n are picture partitions with n segments.

16

3.2 - Step-wise optimization for picture segmentation

n that minimizes

requires a

The identification of the partition P

a global criterion or cost function G search

over the entire space of all possible picture partitions,
{P}. The

prohibitive because of the large

exhaustive search is
of the (P}
constrain the

implementation of an
size space.

One possible approach 1is to search to a

sub-set of (P}, U c (P}, which only guaranties a
sub-optimum solution. Examples of this approach are
"gradient descent" techniques which consist in moving
pixels from one segment to another if such moves improve
the global criterion or cost function G, [23], [26].

A hierarchical data structure can also be employed to
define a useful subset of picture partitions [16]. A

hierarchy of segments can be represented by a segment tree

in which nodes correspond to segments. Each segment SE is
oot
i,1 i,2

which are disjoint sub-sets of S?, and which are called

linked to the segments of the lower level S

"sons" of Sz. Therefore, a picture partition corresponds
to a sub-set of these tree nodes.

which
construction of a segment tree as the result of a

of step-wise

A picture segmentation algorithm involves the

sequence

optimizations is now  introduced. The

presentation is similar to the one proposed by Ward [35]
for hierarchical clustering. It requires a global
criterion or cost function G( P ) which reflects the cost

or loss of information resulting by

oicture with the partition P.

representing the

17



0 0

An initial picture partition P0={Sg,82,...sn) with n

kth iteration, the
pk-1 partition to
As the number

first defined. At the

algorithm merges two segments from the

k _ ok ok k
= (S1,55---S5_,}-

segments is

produce a new partition P

of segments is decreased by one at each iteration, Pk

must
contain n-k segments. G(Pk) tends generally to increase
from step to step and can be written as:
k
cpk) = ey + Y, cehH -ce™Y
T=1 (3.2-1)

The minimization of G(Pk) is therefore associated with the
term of the which
corresponds to the increase of G at each iteration. Thus,
the global optimization problem is reduced to a sequence of
step-wise optimizations.

minimization of each summation

However, the minimization of each

term, G(P¥)-G(P* 1), yields the global optimum for G(P¥)
only if the terms are independent, which is not necessarily
the case. Nevertheless, it can constitute an interesting

sub-optimal approach.

The goal of the step-wise optimization is therefore to
find the two segments whose merger produces the smallest
increase of G. For the picture problem, G

increases monotonically with the number of iterations, k,

approximation

¢e? < ey ... < Y ... < Y

This increase results from the merging of two segments S,

1
and Sj, and can easily be calculated from equation 3.1-6:

Ci,j = H(SikJSj) - H(Si) - H(Sj)

(3.2-3)

18

The only terms of G(P) that are affected by the merging are

H(Si) and H(Sj) which are replaced by H(Siklsj). Thus,

Ci 3 is the step-wise criterion to be optimized. So, each
’

iteration involves

1) the identification of all pairs of connected segments

(Si’sj)'
2) the calculation of Ci,j’
3) the selection of the lowest Ci,j' and
4) the merging of the two corresponding segments.

It must be noted that the algorithm does

that P¥

with n-k segments.

not guarantee

will optimize G( P ) amongst all the partitions
Nevertheless, it yields good results as
data

can constitute an advantage for many applications.

will be seen, and the implied hierarchical structure

3.3 - Picture approximation by constant value regions:

described
optimization

The step-wise optimization algorithm (HSWO)
global

definition of the

in section 2.1 can be adapted to the

case by an appropriate step-wise

criterion, As a particular example, the concepts are

illustrated by the piece-wise approximation of a picture,

f(x,y), by constant value regions.

In constant piece-wise approximation (or =zero order
approximation), a picture is divided into segments Si which
are approximated by their mean values, ui

ry ey) = Wy (3.3-1)

19



The segment approximation error or the segment cost is then
the sum of the squared differences between the pixel values

and the segment mean P; :

H(s ) = 2, (fay -p) 2
(x,y) €Sy
(3.3-2)
In order to wuse the HSWO algorithm,‘lthe step-wise

criterion and the segment descriptive parameﬁers Di must be

defined. The step-wise criterion is as given before:
= . N - - L ] «3-
Ci,j H(Slk)SJ) H(Si) H(Sj) (3.3-3)
which can now be rewritten as:
c Ni'N] ( - )2
1,3 Ny o+ Ny By 3
(3.3-4)

.

-where Ni and Nj are the number of pixels in Si and S.. The
step-wise minimization of Ci 3 therefore results in the
14
merger that minimizes the in the

The segment descriptive

increase overall pixel
variance around the segment means.
parameters, Di' needed to calculate the criterion are the
segment size, Ni’ and mean, "i' The
stopping condition is discussed in more

5.

definition of a

detail in section
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Approximations with higher order polynomials can be
developed in a similar manner. For example, the <case of
planar approximation has been analyzed [4], [5]. A segment
Si is approximated by a plane:

r,(x,y) = ai + ai (x) + ai (y)
it 0,0 1,0 0,1 (3.3-5)
and the sum of the squared errors is wused as the segment

cost H(Si).

3.4 - An illustrative example:

The operation of the algorithm is now illustrated by a
simple example. Fig. 3.1 shows a 4x4 pixel picture with 7
initial constant level segments. The algorithm starts with
an initial partition PO of 7 51'82""57‘ Fig.

3.2 shows a segment tree which represents the sequence of

segments,

segment mergers; the algorithm sequentially creates the

segments S8 through 513. Table 3.1 shows the sets of

criterion values, {ci j}' used at each iteration, with the
’

minimum enclosed by a rectangle.
To further illustrate the operation of the HSWO
algorithm, consider the first iteration shown in Table 3.1.

The minimum criterion value corresponds to C2 5=1.2; thus
’

segments 82 and 55 are merged to form the segment Sa; the

neighbourhoods and the criterion values are then updated.

The process 1is repeated and yields a hierarchy of

partitions, with a reasonable stopping point being S10 and

812.

21



1 2 2 13 S2
1 10 2 13 S1 S4 S3
1 3 3 13 S5
6 6 10 10 S6 s7
a) gray level values b) initial partition

Fig. 3.1 : A small picture with its initial partition.

iter. 6

iter. 5

iter. 4

iter. 3

iter. 2

iter. 1

Fig. 3.2

.
.

Sequence of segment merges.
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Table 3.1 : Sets of criterion values Ci 3
’
Sets of criteria for each iteration
i, 3 Cy 3 it.1 it.2 it.3 it.4 it.5 it.6
’

1, 2 1.5 1.5

1, 4 60.7 60.7 60.7

1, 5 4.8 4.8

1, 6 30.0 30.0 30.0

2, 3 181.5 181.5

2, 4 48.0 48.0

2, 5 1.2 [1.2]

3, 5 120.0 120.0

3, 7 10.8 10.8 10.8 10.8

4, 5 32.7 32.7

5, 6 9.0 9.0

5, 17 49.0 49.0

6, 7 16.0 16.0 16.0 16.0

8, 1 3.7

8, 3 210.7 210.7

8, 4 48.1 48.1

8, 6 18.5 18.5

8, 7 82.5 82.5

9, 3 270.0 270.0

9, 4 58.7 58.7 58.7

9, 6 27.2 27.2

9, 7 105.6 105.6
10, 6 48.1 48.1
10, 9 303.1 303.1

11, 4 48.4
11,10 277.0 277.0
12,10 244.6 244.6




4 - PROBABILITY OF ERROR IN HIERARCHICAL SEGMENTATION

Pattern recognition and picture analysis are often

regarded as statistical decision processes. In this
section, it 1is first shown that statistical hypothesis
testing can be employed for picture segmentation. A

picture is regarded as composed of regions with different
gray level probability density functions. A picture
segmentation can be produced by testing and merging two
There is two

types of error that can occur: type I error occurs when two

segments if they belong to the same region.

similar segments are kept disjoint, and type II occurs when
dissimilar segments are merged. In general, decision
processes can be evaluated by cost functions which assign
different weights to the different decision outcomes. This
cost function must also take into account the
inter-dependencies between each decision, which is very
difficult for applications such as picture segmentation
problems. Also, in the hypothesis testing approach, the
cost function has been reduced to the probability of error.
In previous works [17], [14], [9], tests are designed such
that the probability of type I error does not exceed a
threshold values, the evaluation of the probability of type
II error being usually impossible in real applications.

This section will examine the sequential testing aspect
of hierarchical segmentation. It is shown that type 1II
errors are the most important and it is
advantageous to minimize its probability.
by a step-wise optimization process which finds and merges
the most similar segment pair.

therefore
This is achieved

This process corresponds to

the HSWO algorithm presented previously. Moreover, an

example illustrates the relation between the picture
approximation and the hypothesis testing approach: wusing
the same picture model, both approaches result in the same
Following a statistical approach,

picture segmentation can also be regarded as a best

step-wise criterion.
estimate problem, and in the appendix, it is shown how the

best estimate of a picture partition can be rewritten as a
picture approximation problem.

4.1 - Hypothesis testing:

The statistical picture model employed for the picture
segmentation 1is now presented. It is assumed that a
picture f(x,y) is composed of distinct regions {Rk), where
each region is viewed as a statistical population and is
defined by its probability density function, PDFk:

f(x,y) = PDFk ’ for (x,y)e€ Rk (4.1-1)

The goal of a picture segmentation process is then to find
the true picture partition {Rk}. Let Si designate any
S; ©Ry.
Therefore, an hypothesis testing approach can be used to
decide if the observed values of the segment Sy f(x,y),

for (x,y)esi, belong to PDFk.

arbitrary sub-part of a true region Rk’

The merging of segments can also be based upon
hypothesis testing. For two arbitrary adjacent segments,
Si and Sj' the usual statistical test would determine if
they belong to the same true region R, : $;C Ry and sjc Ry .
However, as the characteristics of Rk are unknown, the
statistical decision must instead consider whether the
pixel values of the two segments come from the same

probability density function.
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A test is usually described in terms of some statistic,

d, which is a reduction of the observed data [20]. Hence,
let d be a measure of the similarity of the estimated
probability density functions of segments Si and Sj. A
statistical decision process can then be used to determine
which one of the following two hypotheses is true.

H0 H d = 0 ,

Hl : d = dtrue ’ (4.1-2)
where the hypothesis HO indicates that the two segments
belong to the same true region, while the hypothesis H

1
defines segments belonging to different regions.

The statistical
accepting H, if d is small, more precisely, if d < t,
t is a selected threshold (see Fig. 4.1).
of a test is judged according to its tendency to

decision therefore consists of
where
The performance
lead to
wrong decisions. Two types of error are considered:
Type I : rejecting HO when Ho is true

Type II: accepting H, when Hy is true (4.1-3)

Under H,

Fig. 4.1 : Probabilities of error in hypothesis Lestings.
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The probability of these two error are
represented, respectively, by o« and P. They must both be
The threshold value, ¢t,

can be modified such as to reduce either @ or p, but not

types of
low for a good decision process.

both simultaneously. Therefore, some compromise must be
reached; for example, to select a t such that o=p.
that

regions

An example is now considered where it is assumed

an ideal picture 1is composed of constant value

corrupted by an uniform Gaussian white noise. Each pixel

value f(x,y) inside a region Ry, (x,y)eRk, is regarded as a

random variable, with Gaussian distribution of mean my, and
variance 02, N(mi,oz). Therefore, the difference of the
segment means may be used to decide if two segments belong
to the same region;

dj,y = TRy - By 1 (4.1-5)

where By and uj are the mean values of segments Si and Sj'

This statistic is employed to test the two
H0 and Hl'
are calculated.

hypotheses,
and the probabilities of types I and 1II
If H ui—uj has a

error

0 is true, Gaussian

distribution with a zero mean and a variance of 03:

2

2 _
G4 = (1/N1+1/Nj) o

(4.1-6)

where Ni and Nj are, respectively, the sizes of segments Si
and S.. The H0 accepted if d £ t, and,

therefore, the probability of type I error is:

hypothesis is

2
X

t 1 _
a = 1 - —_— EXP ( ——5—
J.—t Van %4 2 cg
(4.1-7)

27



If Hy is true, ui—uj has also a Gausslian distribution

with the same variance,

o’

probability of type II error is then:

B ’ :
= —_— EXp ( —m———5—
f_t 2z o 2 o2

Low values for a and P can be achieved,
/od

only if dtrue

large.

but with mean dtrue' The
2
- (x-d )
true ) dx
d (4.1-8)
simultaneously,

As O

segment sizes, the probabilities of errors are
decisions involving larger segments. This is

in Table 4.1 which gives the @ and B values
segment sizes, with d

30

and t= 1.5 0 .

q decreases with the

smaller for
illustrated

for different

Table 4.1 : Probabilities of errors for different segment

sizes rrue = 3 c6and t = 1.5 oO.
Segment o B
sizes
1 pixel .289 .144
2 pizxels .134 .067
4 pixels .034 .017
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4.2 - Sequential testing in hierarchical segmentation:

Hierarchical segmentation begins with many small
segments which are sequentially merged to produce larger
ones. Statistical decision can be employed to determine
whether, or not, two adjacent segments must be merged.
However, the sequential aspect of hierarchical segmentation
must be considered in the design of the decision process.
It can be noted that type II error results from merging of
two different segments, and therefore, cannot be recovered
by an agglomerative process. Whereas, type I error keeps
separated two similar segments which can be corrected in a
following step. Therefore, it seems preferable to keep P
at a low level to avoid type II errors. To develop this
point, the hierarchical segmentation is now regarded as a
sequential testing process.

In sequential testing, it is the error probability of
the final result that must be considered, not the error
probabilities of each individual test. However, the
relation between the error probability of the final result
and those of each test 1is often difficult to derive.
Sequential testing is involved in hierarchical
segmentation. With the wutilization of the appropriate
assumptions, some relations between the error probabilities
of each test and of the final result can be demonstrated.
Hence, it will be shown that the probability of type I
error, o, for the final result is equal or lower than those
of the individual tests, while the probability of type II
error, P, for the final result is equal or higher than
those of the individual tests. This means that in
hierarchical segmentation, it is advantageous to keep B at
an appropriately low level for each test, even if large «
values must be used in the first tests.
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A two stage test for merging is first examined. In
stage 1 (see Fig. 4.2), the segments Si and S; are compared
by a first test, test #1. If the segments are
after this test, they will, sooner or later, be involved in
Before this second comparison, Si and/or S%
belonging to the

1 2
Sic Sic Ri and

not merged

a second test.

are merged with some adjacent segments
same regions in order to produce Si and Sg,

S;c s2c R..

] ]
therefore the segments Si and S§ in which Si

still disjoint. The same hypotheses, Ho vs H,, are
employed in both stages. Let o, Bl be the probabilities
and o, B2 for test #2. The

considers

and S§ are

The second stage test, test #2,

of errors for test #1,
probabilities of errors for the combined
designated by o0 and Bl+2' If Ho is accepted in test #1,
then as the segments are merged, test #2 is not needed.

test are

Stage 2 test #2

test #1

() e ()
/N
ORNCEERCORNG

Fig. 4.2 : Sequence of segment testings in a hierarchy.

.

N

Stage 1
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If HO is true, we have:

Prob (accept Hj at test #1) l—al

(4.2-1)
*
al(l—az)

Prob (accept H, at test #2)

where a; is the probability that test #2 rejects H0 when HO

has been rejected by test #1, o, < a; < 1. Then, we obtain:

U p = 1-Prob(accept H, at test #1)
-Prob (accept Hj, at test #2)
(4.2-2)
_ *
%42 5% %
1f H1 is true, we have
Prob(accept H, at test #1) = B,
(4.2-3)
*
Prob (accept Hy at test #2) (1-B1) Bz

*
where Bz is the probability that test #2 accepts HO when Ho

has been rejected by test #1, 0 < B; < Bz. Thus, we
obtain:
B1+2 = Prob(accept H, at test #1)
+Prob (accept H, at test #2)
(4.2-4)
_ - * - *
Bryz = By + (=B By B, + By

where the term 313; is usually small and may be ignored.
It can be noted that if the two
if they always give the same results), then a;=1 and

tests are identical

(i.e.
*

B2=0.

tests #1 do not affect the results of test #2) than a* =

2
*
and Bz = BZ.

If the tests are independent (i.e. if the results of
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If a third step is then added to the process, we
obtain:
(o ) a* o a* a*
a =
1+2+3 1+2 3 1 72 73 (4.2-5)
* * *
B14243 (Biip) + By = By + By + By
and, more generally, for an m step process, we have:
o a* a*
o = e
1+...+m 172 m (4.2-6)

* *

Bruo...4m = By ¥ By +---% By

The probability of type I error is therefore reduced
from one stage to the next. Hence, a high value can be
assigned to a,, as the following tests will reduce the

overall a. It is easily shown that:

€ Minimum ( ay Oor eeey o )

O .. .4m m (4.2-7)

Oon the other hand, the probability of type II error
A large B at the first
stage cannot be subsequently reduced.

increases from stages to stages.

By...+m = Maximum (B, By, -.os Bp) (4.2-8)

An upper bound for Bl +m is given by :

By..oom S By +By+ ...+ By (4.2-9)

As an example, Table 4.2 shows the probabilities of
errors for a three stage process using the same threshold
value, t = 1.5 0. The segment sizes are, respectively, 1, 2
As noted before, the

probabilities of errors decrease with the segment sizes.

and 4 pixels for stages 1, 2 and 3.

The progression of the lower and upper bounds of B1+2+3, is
The bound for Bl+2+3 will wusually be
determined by test #1 where the value of Bl (=.144) is
high, .144 < Bl+2+3 < .228 . The upper bound for 04, ,, 3/
which is the minimum of o values, will instead be
determined by test #3, 0043 < oy = .034

By reducing the threshold values of tests #1 and #2,

also reported.

the B1+2+3 bounds can be reduced without changing the upper
bound of O 4243° In Table 4.3, the threshold values are
chosen such that Bk values are small and almost equal for
the three stages. This results in smaller bounds for
Bl+2+3' .017 S B;,,,3 € .044 . On the other hand, the
corresponding increases in o, and o, have not changed the
upper bound of 00437 which is still determined by test
#3, 04043 < ay = .034

In hierarchical segmentation, it is therefore
advantageous to start with large o« values in the first
stages and then subsequently reduce the a’'s, in order to
keep P at an appropriately low level for each stage. This

concept is exploited in the next section.

33



34
Table 4.2 : Probabilities of error for sequential testing
with the same threshold (d t =306).
rue
Test | Threshold o Bk B1...+k bound
lower upper
$#1 1.5 0 .289 .144 .144 .144
$ 2 1.50 .134 .067 .144 .211
# 3 1.50 .034 .017 .144 .228
Table 4.3 : Probabilities of error for sequential testing
with different thresholds (dt =30).
rue
Test | Threshold o Bk B1...+k bound
lower upper
$#1 .25 o .859 .015 .015 .015
$# 2 .75 © .453 .012 .015 .027
# 3 1.5 0 .034 .017 .017 .044

4.3 - Step-wise optimization:

In hierarchical segmentation, it is preferable for each
stage to keep Bk' the probability of type II error, as low
as possible. But usually Bk cannot be evaluated because

true Also, the probability of type I
o, must be employed instead to
threshold value t.

value allowed for ak at

d is unknown. error,
select the

Thus, the evaluation

appropriate
of the maximum
stage k 1is now examined, the
maximization of o being associated with the
of Bk.

At each stage or segment level, there are many possible

minimization

segment mergers, which can be represented by
(Si,Sj)-
calculated for each pair.

segment pairs
The segment similarity statistic, d
A statistical
accepts the hypothesis Ho and merges segments only if:

i3 can be
decision process

i, 3 (4.3-1)

which can be rewritten as:

vi,j €1-a or a=< 1--vi,j (4.3-2)
where vy 5 is the confidence 1level associated with the
r
interval ( O, di D, l.e. v, . 1s the probability of
] 1i,]

obtaining a value, d, such that, dei 3
’

Prob ( d s d, ; H
i,

Vid 3 7 Ho) (4.3-3)

Defining Voin @8 the minimum over vy 3
’
then the utilization of an o greater
that no
redundant.
ook = 1_Vmin’ results at 1least 1in one

Hence, a hierarchical segmentation algorithm can

vmin Min (v
than

1,3
1—vmin implies
segments which renders the

are merged, stage

Therefore, the maximum allowed value for a 1is
which merger.

employ a
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with the
minimum confidence level vy 3 and merges the corresponding
r

step-wise process which finds the segment pair

segments.
o value for each stage.

. This is equivalent to using the maximum allowed

Step-wise optimization, by maximizing ak, assures that,
at each step, the probability of type II error Bk is kept
to it lowest value. This should also keep B1+...+m at a
low value. The step-wise optimization algorithm (HSWO)

described in section 2.1
with the appropriate step-wise criterion.

can therefore be employed here

The step-wise criterion for the previously discussed
4.1) |is This
considered a picture composed of constant value regions and

example (section now derived. example

corrupted by an uniform Gaussian white noise. A statistic,
di,j’ related to the difference of segment means was then
introduced. The associated with the
interval ( O, di,j) under the Ho hypothesis can be derived:

confidence level

vi,j = Prob (d =< di,j H Ho )
9%, L o2
vi = —_— EXP ( ) dx
3 V2r o 2 o4
"4y, 4
Vi,j = 2 ERF ( di,j /O'd ) (1.3-4)
where
2 2
ERF (y) = fy 1 EXP ( - x2/2 ) dx
0o <zn
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Note that the segment pair, Si and Sj, that minimizes
di,j/od will also minimize Vi,j’ therefore di,j/od may be
used as a step-wise criterion:

di j _ Ni NL | pi - "lj |
%4 \ Nj+ Ny c (4.3-5)

where By uj and Ny, Nj are, respectively,

the sizes of segment Si and Sj' and 02 is the

the means and

variance of
noise.

This criterion is similar to the criterion derived for

picture approximation with constant value regions (section
3.3);
d, . Ve, .
i3 = i3
%a ¢ (4.3-6)
and will produce the same results. This is achieved

because constant value regions are used in both cases, and

the mean squared error norm is employed with the wuniform
Gaussian white noise. This 1illustrates the

approximation and the

relation
between the picture hypothesis

testing approaches. Moreover, following a statistical

approach, picture segmentation can also be
best estimate problem, and in the appendix,

regarded as a
it is shown how

the best estimate of a picture partition can be rewritten
as a picture approximation problem.
The step-wise optimization criterion for picture

segmentation by hypothesis testing can also be
>ther picture models.

derived for
statistic d and
required to

In each case, the

its distribution under HO (which is calculate

the confidence level) must be derived. For example, in
nany cases, the likelihood ratio statistic could be
considered [20], [(17].
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5 - EXPERIMENTAL RESULTS

A hierarchical segmentation algorithm based upon
step-wise optimization has been described and analyzed in
the preceding sections. Picture segmentation is first
presented as a picture approximation problem. Segmentation
is then regarded as an hypothesis testing process, and the
probability of error in hierarchical segmentation is
analyzed. In both cases, constant value regions are wused
to model the pictures, and to derive the segmentation
criterion. However, it is always considered that the
pictures possess a hierarchical structure, which provides a
more realistic modeling. The hierarchical step-wise
optimization algorithm is now employed to segment two
This will illustrate the usefulness of the model

and the operation of the algorithm.

pictures.
A more complete
evaluation is presented in [5] with the wutilization of
multi-spectral LANDSAT and SAR images and other segment
models.

5.1 - A checkerboard example:

The hierarchical
(HSWO) is first applied to a checkerboard example, where
the two tones are designated by m, (=-2.0) and m, (=+2.0).

step-wise optimization algorithm

The checkerboard is corrupted by a Gaussian white noise
with zero mean and variance equal to one (see Fig. 5.1).
The picture size is of 64 by 64 pixels, and, in the initial

partition, each pixel corresponds to one segment. After
4095 mergers (iterations), the number of segments is
reduced to one, the entire picture. Let cmin,k designate
the minimum criterion wvalue at iteration k. The first

steps of the algorithm yield Cmin,k values close to zero,
which increase in the following steps as 1larger segments
are merged. The resultant minimum criterion values,
Cmin,k’ for the last 150 mergers are shown in Fig. 5.2.
The abscissa corresponds to the number of segments in the
partition (increasing from left to right), or to the
jteration number (increasing from right to left). There is

an important jump in the C values, where the merging

of dissimilar segments T;gﬁgres) begins. The arrow
indicates an appropriate stopping point Jjust before this
occurs, and Fig. 5.3 presents the resultant picture
segmentation. The situation in real images 1is more

complex.
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Fig. 5.1: Checkerboard Fig. 5.3: Segmentation of the
picture. checkerbord picture.
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Fig. 5.2 : Minimum criterion value curve. The abscissa

corresponds to the number of segments in the
partition (increasing from left to right), or to the
iteration number (increasing from right to left).

5.2 - Segmentation of a remote sensing picture:

Fig. 5.4 shows a 32x32 Landsat satellite picture
(0.8-1.1 um band) of an agricultural area near Melfort in
Saskatchewan, Canada. The picture is initially divided
into 1024 regions of one pixel each, and 1is segmented by
the HSWO algorithm using the increase of the constant
approximation error as the step-wise criterion. This
picture possesses a rather complex structure with regions
having varying sizes and mean value differences. In Fig.

5.5, the sequence of C values are drawn as a function

of the number of szggéﬁts contained in the picture
partition at step k. This sequence does not indicate a
unique stopping point as in the checkerboard example.

In Fig. 5.6, four partitions are presented containing
respectively, (a) 18 segments, (b) 36 segments, (c) 118
segments, and (d) 212 segments. Partition (a) divides the
picture into what seems to be its most basic parts. These
basic regions can moreover be considered as composed of
finer elements, which can be obtained by reducing the
number of segment mergers as shown by partition (b).

Fig. 5.4 : A Landsat satellite picture
(32x32 pixels, 0.8-1.1 um band).
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Fig. 5.5 : Minimum step-wise criterion curve for

different axis scales. The abscissa
corresponds to the number of segments in the
partition which is related to the iteration number
(increasing from right to left).



Consider, for example, segment 1 in Fig. 5.6-a which is
divided into segments 2 and 3 in Fig. 5.6-b. There 1is a
small gray level difference between region 2 and 3, thus,
region 2 represents a finer picture component than region
1. Partitions (c) and (d) correspond to still finer
picture segmentations.

The segmentation algorithm performs a hierarchical
decomposition of the picture where the hierarchical levels
could be related to the resolution levels. Hence, a
region, which 1is higher in the hierarchy than its
sub-parts, is also larger than its sub-parts. In the
remote sensing picture, the partition with 18 segments can
be regarded as the highest level where only the most
important components of the picture are preserved. This is
illustrated by Fig. 5.7-a where each picture segment has
been replaced by its mean value. These segments encode the
gross information of the picture; they indicate the most
prominent areas. The other partitions of Fig. 5.6
correspond to splitting these segments into sub-units. The
corresponding approximation pictures are shown in Fig. 5.7
and indicate that finer picture components are retained.
These picture partitions can be regarded as different
levels of the hierarchy which correspond to different
picture component resolutions.

One important consequence of this hierarchical
structure for the step-wise optimization algorithm is that
the user must specify at which level to stop the segment
merging. The segment level can be defined by the
approximation error, by the Cmin value, or by the number of
segments in the partition, each of these parameters being
interrelated. The examination of the approximation error
and Cmin curves can then complement the context knowledge
in order to select a stopping point.

15

b) 36 segments

c) 118 segments d) 212 segments

Fig. 5.7 : Approximation of the Landsat picture.



The hierarchical decomposition of the picture contains
more information than one particular partition. This
information could be exploited advantageously by a high
For example, the C

level process. curve can be examined

min
in order to know when to stop the segment merging and
obtain an partition. The

decomposition could also be used to characterize picture

appropriate hierarchical

structure. Different types of texture, for example, could
result into different types of hierarchical decomposition.
More work is required in order to understand what kind of
information is present in the decomposition, and how a high

level process could take advantage of it.
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6 - CONCLUSION

The importance of providing a precise definition of the
picture segmentation task in low level terms has been
stressed. This has revealed the need for generic
constraints that could be effectively introduced into the
segmentation stage. The hierarchical structure of a
picture is one such important generic constraint, and it
has been shown to efficiently exploit this structure that
the utilization of a step-wise optimization rule is
required. A new hierarchical segmentation algorithm based
upon step-wise optimization (HSWO) has been introduced. It
starts with an initial picture partition, and merges at
each iteration the two most similar segments found by the
optimization of a

"step-wise criterion”. In

contradistinction to previous hierarchical segmentation
algorithms based upon logical predicate equations, the HSWO
algorithm employs a more global and gradual strategy.
Regarding picture segmentation as an optimization
problem is useful in providing a precise definition of a
segmentation task. In this paper, picture segmentation is
regarded as the piece-wise polynomial approximation of a
picture. The approximation error is then employed as a
global criterion, and the picture segmentation consists
therefore in finding the partition that minimizes this
It is shown that the addition of a hierarchical

structure constraint reduces the search space and the

criterion.

global optimization problem is replaced by a sequence of
step-wise optimizations, where the step-wise criterion is
derived from the global criterion.



Pattern recognition and picture analysis are often
defined in probabilistic

_segmentation can be regarded as

terms. picture

an hypothesis testing

Hence,

process which merges only segments that belong to the same

region. Two types of error may occur: type I error occurs

when two similar segments are kept disjoint, and type II
error occurs when dissimilar segments are merged. It is
stressed that, in hierarchical segmentation, type 1II error
is the most important and it is therefore advantageous to
minimize the probability of this error. This is achieved
by a step-wise optimization process which finds and merges
the most similar segment pair.

It has also been shown experimentally that the HSWO
algorithm can correctly detect and express the hierarchical
structure of a picture. The sequence of the criterion
iteration

information about the picture structure,

values selected at each useful

indicate

provides
and can
convenient stopping points for segment merging.
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APPENDIX

THE BEST ESTIMATE OF A PICTURE PARTITION

The best estimate of the true picture partition is

derived and shown to correspond to the picture partition

that minimizes the approximation error. Let R=[Ri} be the

true picture partition, m, be the constant value for region

R and f(x,y) be the observed picture value

il

e(x,y) ; for (x,y) ¢ Ri

f(x,y) = m +

(B-1)
where ae(x,y) are Gaussian independant random variables with
zero mean. Then, the best estimate ﬁ-[ﬁi} of the picture
partition maximizes the likelihood function

L(R;£) = Prob( £ ; R ) (B-2)

’ I 1 A 2 2
= EXP{ -(f(x,y)-m(x,y)) / 207}
(x,y) Vin o
1 n n 2 2
= EXP{ - (f(x,y)-m(x y)) /20° '}
V2n O (x,y) !
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where a(x,y)'ﬁi for (x,y)eR;, ﬁi being the constant value
for region ﬁi' and where n is the number of pixels in the

picture. Thus, maximizing L(ﬁ;f) corresponds to minimizing

A 2
( f(!,y) - m(x,y) )

which can be rewritten as :
Z Z ( £(x,y) - m )2
(B-4)

(x,y)cR1

The best estimate thus cot}esponds to the partition with
the lowest approximation error, and it can be shown that

the best value for ﬁi is the mean value of the Eegion ﬁi'
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