
 Jean-Marie Beaulieu
BeaulieuJM.ca

website © Jean-Marie Beaulieu

[Bea1991]
Programming of Application Interface and Image
Access Made Simple

Author:

Conference:

Abstract: A good user interface is an important aspect of software products. We should
also consider the e"ort and time spent for its programming. We present a “C”
language extension facility which allows the definition of menus and fill-in
forms. All the flexibility of the “C” programming language is preserved while
making user interfaces programming easier. Following an object-oriented
approach, we have also defined a set of functions and macros for image
manipulation.

Programming of Application Interface and Image Access Made Simple,
Beaulieu Jean-Marie,
Canadian Conference on Electrical and Computer Engineering, Quebec, Quebec,
Canada, Sept., 1991, p. 23.1.1-4.
[Bibtex]

DOWNLOAD the author accepted version

Beaulieu Jean-Marie

Canadian Conference on Electrical and Computer Engineering

Quebec, Quebec, Canada

Sept., 1991, p. 23.1.1-4

https://beaulieujm.ca/
https://beaulieujm.ca/
https://beaulieujm.ca/publi/Bea1991
javascript:void(0)
https://beaulieujm.ca/pdf/Bea1991.pdf

Congres canadien en gMie 61ecb'ique et infonnatique
Canadian Conference on Eleclrical and Computer Engineering

Qu6bec. (Qu6). Canada. September 25-27 Septembre 1991 23 . t . l

PROGRAMMING OF APPLICATION INTERFACE AND
IMAGE ACCESS MADE SIMPLE

Jean-Marie Beaulieu

Departement d 'Informatique

Universite Laval, Quebec, QC, G1K-7P4

Abstract

A good user interface is an important aspect of
software products. We should also consider the effort and
time spent for its programming. We present a "C" language
extension facility which allows the definition of menus and
fill-in forms. All the flexibility of the "C" programming
language is preserved while making user interfaces
programming easier . Following an object-oriented
approach, we have also defined a set of functions and
macros for image manipulation.

1. Introduction

The execution of application programs is much
easier if we have an appropriate interactive environment.
Hence, user interface systems based upon windows, menus,
icons and mouses are now available for microcomputers
and workstations. However, all this versatility may be not
required for some applications. For example, the execution
of image processing programs requires generally few
selections from a set of alternatives and the input of few
parameters before starting the program . The programming
environment should be adapted to the application domain.

We should also consider the difficulty of the
programming task. A complex interactive environment
makes its programming more difficult [2],[3]. In our
research, we have selected the basic elements of window
and menu interfaces, while keeping these as simple as
possible. This was originally developed to operate into a
classical environment of terminals (VTlOO) connected to
main frame computers (Vax) [1].

An appropriate interactive environment is needed
to give more control to the user over the execution of
application programs. We propose "C" language extensions
to make the programming of menus and fill-in forms easier.
The extensions are viewed as a set of new language
instructions to define the static and dynamic parts of forms.
Hence, forms which set the values of many variables could

be programmed with few instruction lines. This tool is
appropriate for scientific application development, as it
provides appropriate interactive facilities with minimal
programming cost in a standard programming environment.

The static part of forms is defined by a set of
contiguous program lines which are an exact copy of what
will appear on the terminal screen. Special characters in the
text indicate positions where variable values will be
written . Instructions, similar to read or write instructions,
are used to read and/or write the values of variables to
these screen positions which could be easily referenced by
identification numbers. In the active part, the programmer
defines the instructions that will be executed when the
cursor moves to a new position or when the user modifies
a variable value. Actions could also be associated with
keyboard control keys by simple "IF_ " instructions.
Complex responses to user inputs could thus be
programmed. '

Modular programming can be used in the
definition of large forms. A form can be composed of
embedded sub-forms. The cursor can move freely from
form to sub-form with the corresponding transfer of the
program control from the main routine to the subroutine.
The forms are hierarchically organized. The cursor can also
be bound to form windows that overwrite the previous
form. The user must leave (close) the form to get back to
the previous one.

Following an object-oriented approach, we have
also defined a set of functions and macros for image
manipulation. An object consists first of a descriptor and a
memory space. A module is responsible for the
management of the memory space and descriptors. We view
a file as main memory space, this simplifies the software
programming. For the "image" object, operations to define
(name, type, size, ...), to open, to close, to access and
modify the pixel values are provided. New object
definitions could be easily added (e.g., histogram, data
base).

2. Fill-in forms

Fill-in forms and menus are displayed on the
terminal screen and control the content of parts of the
screen. A fill-in form description is composed of a static
part, which defines the annotation text or background, and
of a dynamic part which controls the output and
modification of variable values. The dynamic fields are
named fels (form elements). The user can move to any fel
by using the cursor keys, enter a new value, and then start
the program execution by pressing the "DO" key.

For example, the following program acquires the
values of parameters and executes (calls) an image contrast
enhancement function.

include 11uiform.h 11

2 main()
3 {

4 char input[30], output[30];
5

6

7

8

9

int wsize; float coef;
FORM(1, 1, 1,0,0, 11%&11, UiFullScreen

*** CONTRAST ENHANCEMENT***

input file

window size
coefficient

%1 &

%2 &
%3 &

output file %4 &
ORM_ACTION

II
I

II ,
II

I

II ,
II ,
II ,
II ,
II

10
11
12
13
14

15
16 POS(1) FEL_STRING(1, input, UiRead,11%s11, 30);
17 POSC 2) FEL_INTC 2, &wsize, UiRead,11%d11, 1,50);
18 POS(3) FEL_FLOAT(3, &coef,UiRead, 11%5.2f11,0.,99.);
19 POS(4) FEL_STRING(4, output, UiRead, 11%s11

, 30);
20 IF_KEY(UiKeyOo)
21 contrast_enhanc(input, output, wsize, coef);
22 FORM_END
23 >

The output screen for this program is:

*** CONTRAST ENHANCEMENT***

input file image01

window size 5
coefficient 2.00

output file image02

The C language preprocessor allows the addition
of new language constructs by performing macro or symbol
substitutions. Hence, we have developed appropriate
language constructs to define fill-in forms. Three macros
must be used, FORM, FORM_ACTIONandFORM_END,
with text or instructions included between them to
customise the forms.

The character strings between FORM and
FORM_ACTION define the static part. Each string
corresponds to one line of the output screen. Hence, in the
example program, lines 7-14 give an exact description of
what the output screen will look like. Thus, even with a
simple and conventional program development system, we
get a good evaluation of the output results, without
compiling and executing the program. The dynamic
elements are the missing parts in this text, i.e. the variable
values. Special characters, % and &, are used in the
character strings to mark the positions of these dynamic
elements or fels. In order to make referencing each of these
positions easier in the following part of the program, a
label or number is assigned to each one. They are the
numbers following the % character, and are called fel-id.
The arguments of the FORM macro are the form id, the
position and size of the form, the fel delimitation characters
and the form type (embedded or not).

The program lines between the FORM _ACTION
and FORM_END macros define the dynamic operation of
the form. Any C language instruction could be used here.
However, functions are provided to write or read (i.e. wait
for user input) variable values to a fel (dynamic field)
position. For example, the FEL_STRING function, at line
16, outputs the value of string "input" and waits for user
modification. The arguments are 1) the fel-id to identify the
screen position, 2) the address of the variable, 3) the flag
to indicate the type of operation (output only or output with
user input), 4) the formatting string, and 5) the length of
the string variable. For integer or real variables, a warning
message appears if the value is outside the specified min­
max range. Functions for button and multi-choice selection
variables are also provided. When the read flag is used, the
functions return only after a new value is provided, or a
cursor or control key is pressed. Then, the UiNew variable
can be tested to know if a new value has been provided.
Other form status variables could also be used by the
programmer.

The instruction lines between the FORM ACTION
and FORM_ END macros are divided into groups by POS,
IF and IF_ KEY macros which define when the
instructions are, executed. The FORM_ACTION and
FORM_ END macros generate, in fact, a while loop. The
POS(id) macro tests if the current cursor position is
located at the fel id. If so, the following group of

instructions is executed. At each iteration, only instructions
from one POS macro are executed, while instructions from
many IF_ macros can be executed. The argument of the IF_
macro is any valid C logical expression. The IF_ KEY
macro is used to test if the user has pressed a cursor or
control key. In the example program, at lines 20-21, the
"DO" key is used to start the execution of the contrast
enhancement function. An "exit" key is also defined to exit
and terminate the form (go to line 23).

The cursor can be positioned only on fels
designated for value input (read). Cursor keys are employed
to move from one fel to another. Cursor position is shown
by highlighting the fel value. Combinations of bold,
underline and reverse video are used to distinguish string,
number, button or multi-choice screen fields. Complex
interactive responses could be programmed by writing the
appropriate C instructions after POS or IF_ macros. Hence,
the modification of one fel (variable) value could required
the updating of many other form fields. We can output new
fel values with the flag UiWrite in FEL_ functions. Before
the interactive phase (with cursor movement), an
initialisation phase performs a scanning of the position to
evaluate and display the fel values (without waiting for user
input) . We can assign value to the UiOpcode variable to
perform operations like exit or update the form.

A menu is viewed as a special and simpler fill-in
form. The dynamic screen fields (fels) correspond to
buttons, which should be depressed in order to initiate
actions. The actions are defined by the instructions
following the corresponding POS macros. The macros
MENU, MENU _ACTION and MENU_ END are adapted
from the form macros.

This fill-in form utility could easily be extended to
provide mouse support, pop-up and pull-down menu, run
time window modification of position and size, border and
colour control ...

3. Modular composition of fill-in forms

A fill-in form can be embedded into another form.
After the FORM_ ACTION macro, any C instruction can be
used, even the group of instructions that define a form, or
a call to routines that define forms. Thus, sub-forms can be
defined inside the instructions of a form, producing a
hierarchy of forms. We distinguish two types of
cooperation between a form and its sub-forms: embedded
and overwrite sub-forms.

An overwrite sub-form takes control over its
parent, and replaces the whole or part of the screen with its
output. The cursor can only move inside the sub-form and

the control returns to the parent form only when the user
exits the sub-form. In this case, forms can be viewed as
different screen windows and only one is active at a time.

An embedded sub-form is viewed by the user as
forming an integral part of the parent form. The cursor can
move freely between sub-form fels (dynamic fields) and
parent fels. The cursor movement control routines
automatically exit or enter sub-forms when needed.
Embedded forms are useful for form programming. Their
use allows the modular composition of forms. Hence, a
regularly used part of a form has not to be copied each
time. Instead, it is converted to a sub-form, included in a
routine which is called when required.

For example, in image processing, we often need
the image identification parameters: name, sire, type. It is
advantageous to define a sub-form and include it into a
routine. Then, any application which requires an image
identification can call the routine inside its form to embed
the sub-form. The following program is an example of
embedded sub-forms.

include 11uiform.h 11

2 main()

3 {

4

5
6

7

8

9

10

11

12

13

14

15

16

int img_id, coef;

FORM(1, 1, 1, 9,41, 11%&11, UiFullScreen)

••***••

"* *** IMAGE PROCESSING***

"*
"* input image

"* %1 &

"*
"*
"* coefficient : %5 &

*"
*"
*"
*"
*"
*"
*"

11***11

FORM_ACT ION

POS(1) get_image(&img_id);

I

I

,

17 POS(5) FEL_I NT(5, &coef, Ui Read, 11%d11, 0, 99);

18 IF_KEY(UiKeyDo)

19 process_image(img_id, coef);

20 FORM_END

21 }

22 get_image(int* img_id_p
23 {
24 char name[30l;
25 int npix, nlin;
26 FORM(2, 0,0, 2,32, 11o/o&11

, UiEmbedded
27 11++ name: o/.2& ++11

,

28 11++ dimension: %3& pix o/.4& l in ++ 11

29 FORM_ACTION
30 POS(2) FEL_STRING(2, name,UiRead, 11%s11 ,30);
31 if(UiNew)
32 { *img_id_p = open_image(name);
33 UiOpcode = UiUpdate; }
34 POS(3) npix = number_pixel(*img_id_p);
35 FEL_INT(3, &npix, UiWrite, 11%d11 ,0,0);
36 POS(4) nlin = number_line(*img_id_p);
37 FEL_INT(4, &nlin, UiWrite, 11%d11 ,0,0);
38 FORM END
39 }

The output screen for this program is:

I *** I
I *
I *

*** IMAGE PROCESSING***

I * input image
I * ++ name: image01 ++
I* ++ dimension: 128 pix 128 Lin++

I *
I * coefficient : 10

* I
* I
* I
* I
* I
* I

I
* I

I ***

4. Accessing image data

Computer programs basically access and modify
data stored in memory. However, data files are also used
for non-volatile storage, to preserve data between program
executions. Memory data can be accessed and manipulated
more easily than file data: file data should be first copied
into memory in order to access or modify them.

Following an object-oriented approach, we have
defmed a set of functions and macros for image
manipulation. An object consists basically of a descriptor
and a memory space. The Data Store module is responsible
for the management of object descriptors and memory
space. It provides a uniform view of objects that are stored
either in central (in-core) memory only or in disk files (in­
file). In-core objects are temporary and vanish when the
program terminates. In-file objects are permanent. When
the object is opened, the file content is mapped directly in

central memory space. The file content can then be directly
addressed by data pointers or memory addresses. Standard
file operations, such as reading or writing of data lines, are
not needed. File mapping makes file creation or opening
similar to dynamic memory allocation, and provides the
same versatility for data access. File mapping is not
supported by all computer systems. It can be simulated by
file loading and saving.

The Data Store module also provides header spaces
m front of the data spaces to store data descriptive
parameters. Therefore, the main functions are
open/create/close data stores and read/write header data.
This module is small , with only 600 lines of code.

Using the Data Store module, new modules to
define and manipulate different types of objects can be
easily created. Hence, an image module, with 900 lines of
code, provides basic image access and manipulation
functions: 1) definition, creation or opening of
multispectral images (in-file or in-core), 2) direct access to
pixel values , 3) image region selection, image copy with
data type conversion. An image descriptor structure
contains the information to access and manipulate the image
data. This information is updated when an image is opened
or created. Part of it is stored into the data store header.
The image data is viewed as a vector and any pixel value
can be directly accessed with the macro ImPixelValue.

5. Acknowledgments

This research is supported by the Natural Sciences
and Engineering Research Council of Canada.

6. References

[1] F.J. Dixion, "Simplifying Screen Specifications: the
Full Screen Manager Interface and Screen Form
Generating Routines", The Computer Journal, Vol. 28
(2), pp. 117-127, 1985.

[2] M. Shaw, "An Input-Output Model for Interactive
Systems", CH1'86 Conference, pp. 261-272, April
1986.

[3] B.A. Myers, "User-Interface Tools: Introduction and
Survey", IEEE Software, pp. 15-23, January 1989.

