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ABSTRACT 

Segmentation of polarimetric SAR image is a difficult problem. We show that image 
segmentation can be viewed as a likelihood approximation problem. The optimum criterion is 
derived for a hierarchical segmentation process. The stepwise criteria are derived for 
polarimetric SAR images. The methods currently used for classification or segmentation of 
polarimetric SAR images are based on the multivariate complex Gaussian model for 
homogeneous scene. Their performances are significantly degraded in the presence of spatial 
texture. The optimum criterion is derived for segmentation of K-distributed textured polarimetric 
SAR images. Good results are shown for Convair-580 SAR data collected over the Ottawa 
region, Canada. 

RÉSUMÉ 

La segmentation d’images polarimétriques est un problème difficile. Nous montrons que la 
segmentation d’image peut être vue comme un problème d’approximation par une mesure de 
vraisemblance. Le critère optimum est dérivé pour un processus de segmentation hiérarchique. 
Nous dérivons le critère d’étape pour les images SAR polarimétriques. Les méthodes 
actuellement utilisées pour la classification et la segmentation des images polarimétriques sont 
basées sur un modèle multivarié gaussien complexe pour les scènes homogènes. Leurs 
performances sont significativement réduites lors de la présence de textures spatiales. Le critère 
optimum est dérivé pour la segmentation d’images SAR polarimétriques texturées suivant une 
distribution K. De bons résultats sont obtenus pour les données SAR du Convair-580 recueillies 
au-dessus de la région d’Ottawa, Canada. 

INTRODUCTION 

Segmentation of SAR (Synthetic Aperture Radar) images is greatly complicated by the presence 
of coherent speckle.  All the methods currently in use for classification or segmentation of 
polarimetric SAR images are based on the multivariate complex Gaussian model (Lee 1999), 
(Lui 2000), (Conradsen 2003). Since their performances are significantly degraded in the 
presence of spatial texture, the application of these methods should be limited to “homogeneous” 
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Gaussian areas. 

In this study, a new method based on the hierarchical stepwise optimization is introduced for 
segmentation of K-distributed textured polarimetric SAR images. The product model is assessed 
and applied only within areas in which the model is valid.  

The main approaches to image segmentation are based upon classifications, edges or regions.  
Image segmentation could result from the classification or the labelling of each pixel.  Pixel 
classification does not involve generally the spatial aspect (Smith 1996).  The image partition is a 
side effect of the classification.  Markov random field and texture models have been used to 
include the spatial aspect into the class probabilistic models (Lee 1999), (Lui 2000).  An edge 
detection process could also be used to define the boundaries of segment in which the signal is a 
wide-sense stationary process (Touzi 1988), (Touzi 2002). 

We consider that truth image segmentation processes are based upon regions.  The goal of the 
process is to identify regions (segments) that satisfy some criteria.  Spatial aspects are involved 
in the criteria.  It is often defined as hierarchical segmentation.  A typical agglomerative 
approach involves the sequential growing of regions.  The first techniques used threshold-based 
decision.  More powerful techniques now use iterative optimization processes (Dong 1999), (Lira 
1998), (Beaulieu 2001). 

IMAGE SEGMENTATION AS A LIKELIHOOD APPROXIMATION PROBLEM 

Image segmentation could be viewed as the transformation of the original image into a more 
complex description. The image is represented by a set of regions or segments. Each segment is 
described by a set of parameters, which are selected according to suitable image models. These 
models can be used to evaluate the image description or the segmentation result. A good 
description should explain the observed pixels values.  

Maximum likelihood approach 

Following a statistical approach, the image segmentation could be presented as a maximum 
likelihood estimation problem. Let xi be the value of pixel i. The probability density function 
(pdf) of xi is function of the segment S that contains the pixel i, (i∈S). The pdf are described by a 
set of parameters, θ. For the segment S, the pdf of xi is p( xi | θS ). We assume that the pdf of xi is 
only a function of θS and is conditionally independent of other pixel values. Let X be the set of 
pixel values for the whole image, X = { xi | i∈I }. Let ΘP be the set of all θS for the partition P, 
ΘP = { θS | S∈P }. The likelihood function of ΘP and P given X is  

 ( , | ) ( | , )P PL P X p X PΘ = Θ . (1) 

We could write the equation as a product of pixel pdfs because the probabilities of pixels are 
conditionally independent.  

 ( )( , | ) ( | )P i S i
i I P

L P X p x
∈

Θ = θ∏  (2) 
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S(i) is the segment containing the pixel i and the parameters are evaluated for the partition P. The 
parameter values that optimize the log likelihood function also optimize the likelihood function.  

 ( ) ( )( )ln ( , | ) ln ( | )P i S i
i I P

L P X p x
∈

Θ = θ∑   (3) 

In the maximum likelihood approach, we want to find the partition P and the segment descriptive 
parameters ΘP that optimize the likelihood function. The likelihood function evaluates the 
probability of observing the pixel values X when the segments of the partition P are described by 
the parameters θS. The probability is a measure of the correspondence between the description 
and the image data. The best description is used to estimate the truth state of the nature.  

Best parameter evaluation 

For a segment S, the parameters θS could usually be evaluated from statistics calculated over the 
segment. For a given partition P, the log likelihood function value for the best parameters ΘP 
could be defined as LLF(P) and could be calculated rapidly.  The function could be written as a 
sum of the maximum log likelihood values for each segment.  

 ( )( ) ln ( , | ) ( )P
S P

LLF P L P X MLL S
∈

= Θ = ∑  (4) 

where 

 ( )( ) ln ( | )i S
i S

MLL S p x
∈

= θ∑ . (5) 

Eq. 4 shows that the difficult part of the optimization process is to find the best partition. Once 
we have a partition, it is easy to calculate the best descriptive parameters for this partition. 

Finding the best partition 

We cannot explore all image partitions with k segments to find a global optimum. A hierarchical 
framework is used to restrict the exploration space. In hierarchical segmentation, we start with an 
initial partition Pn and then produce a sequence of partition Pn … Pk+1, Pk … P1 by merging two 
adjacent segments at each iteration. The partition Pk is produced by merging two segments of 
Pk+1. The optimization of LLF results then into a stepwise optimization process that finds the 
best merge at each iteration. This is a sub-optimum approach with the hierarchical segment 
merging constraint. 

The used stepwise criterion should measure the decrease of LLF. If we consider the merging of 
segment Si and Sj from partition Pk+1 to produce the segment Su (= Si∪Sj) in partition Pk then the 
difference between LLF(Pk+1) and LLF(Pk) will only involve the segment Si, Sj and Su.  

 , ( ) ( ) ( )i j i j uSC MLL S MLL S MLL S= + − . (6) 

At each iteration, we should merge the segments that minimize the  SCi,j criterion.  
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POLARIMETRIC SCENE-SPECKLE STATISTICS 

The polarimetric scattering matrix measured by a polarimetric SAR consists of four complex 
elements. For a reciprocal medium, the two cross-polarized terms are identical and the 
polarimetric feature vector x has only three unique complex elements, x = (hh, hv, vv)T, where, 
for instance, hv is the horizontally polarized return signal, given that the transmitted signal is 
vertically polarized.  

Homogeneous scene 

For a homogeneous scene, the vector x is complex Gaussian-distributed with a covariance  
Σ = E[ x xH]. E[ ] denotes the expectation operator and the superscript H indicates the complex 
conjugate transpose. 

 ( )1
3
1( | ) exp Hp x x x−Σ = − Σ

π Σ
 (7) 

For a segment S with ns pixels, the best estimate of the covariance matrix Σ is the sample 
covariance matrix, Cs (Goodman 1963).  

 
1ˆ H

S
S x S

C x x
n ∈

= Σ = ∑  (8) 

The maximum likelihood value for this segment is   

 ( ) 3( ) ln ( | ) ln ln 3S S S S S
x S

MLL S p x C n C n n
∈

= = − − π −∑ . (9) 

We obtain the stepwise criterion  

 , ( ) ln ln lni j i j Si Sj i Si j SjSC n n C n C n C∪= + − −  (10) 

where ni and nj are the sizes of segments Si and Sj. At each iteration, the hierarchical 
segmentation algorithm merges the two segments that minimize this criterion.  

For L-look image, we use the covariance matrix of the pixel Zk instead of the complex vector x 
and ( | )kp Z Σ instead of ( | )p x Σ . Zk follows a complex Wishart distribution within a Gaussian 
area (Goodman 1963). The stepwise criterion corresponds to Eq. 10 where the number of pixel 
of a segment is multiplied by the number of looks L. An equivalent criterion is used in 
(Conradsen 2003) for statistical hypothesis testing and is derived from a likelihood ratio test. In 
the present likelihood approximation framework, the stepwise criterion is related to a global 
measure of the image partition quality.  

Textured scene 

At the presence of texture, the product model was used in (Lopes 1997), (Oliver 1998) to derive 
the statistics of the covariance matrix for gamma-distributed scene signal:  
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( ) ( )( )

( )

(3 ) -13 32

3 3
-1 2

2 Tr2
( | )

( ) ( 1) ( 2) ( ) Tr

LL L

L L

K L ZZ L
p Z

L L L
Z

+α− −α

−α

α Σα
Σ = × ×

π Γ Γ − Γ − Γ α Σ Σ
 (11) 

where α is the texture shape parameter and Σ is the covariance of the speckle without texture. Kν 
is the modified Bessel function. There is no direct solution to calculate the best estimates of α 
and Σ that maximizes the likelihood function for a segment S. Approximate solutions have been 
proposed and are used in the current implementation (Backnell 1994). α is calculated by the 
Method of Moments (MoM) and ˆ CΣ = . Removing the terms that will be cancelled in the 
stepwise criterion, the maximum log likelihood is  

 
( )

( ) ( )( )-1 -1
3

( ) (3 ) 2 ln ln( ( )) ln( )

(3 ) 2 ln(Tr ) ln( 2 Tr )L
Z S Z S

MLL S n L L n nL C

L C Z K L C Z−α
∈ ∈

= + α α − Γ α −

− − α + α∑ ∑
 (12) 

where n is the number of pixels of segment S. The stepwise criterion is calculated by (6). To 
evaluate Eq. 12, each pixel of the segment should be visited.  

Unfortunately, this segmentation criterion is based on the product model that is limited to scenes 
where texture is independent of polarization (Touzi 2002). A more general algorithm is currently 
being developed for segmentation of scenes in which the product-model is not valid.  

SEGMENTATION RESULTS 

The likelihood approximation approach for image segmentation have been implemented and 
tested on polarimetric SAR images. A polarimetric Convair-580 SAR data set was collected over 
the Ottawa region. A test region in the Mer Bleu area is selected. The initial 1-look image has a 
resolution of 4m x 0.43m. A resolution of 4m x 4.88m is obtained by taking the average of the 
covariance matrix of 9 pixels. The resulting image (800x600 pixels) is shown in pseudo-color in 
Fig. 1 using the amplitude of the hh, vv and hv channels.  

The image contains crop field areas and forest areas. Fig. 2 shows the result of the segmentation 
when Eqs. 9-10, which are derived from homogeneous scene statistics, are used. The figure 
shows a partition with 2000 segments. It shows that the partition is data driven. We should stress 
the hierarchical nature of the results and the difficulty to find an appropriate stopping point. For 
some parts of the image, more merging should have been done while, for other parts, less 
merging would be needed. Generally, field boundaries are correctly delimited. The segmentation 
is difficult task because of the importance of the noise in SAR images. The homogeneous scene 
criterion seems to give good results for crop fields. More merging is recommended for forest 
areas.  

Fig. 3 presents the segmentation produced by the textured scene criterion (Eq. 12). This criterion 
should be used for forest areas. Statistics of crop fields should be calculated and used to know if 
the field is homogeneous or not (e.g. the amplitude variation coefficient). In Fig. 3, we see that 
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the textured scene criterion produces more merging in the forest areas. The segments in the forest 
areas are larger while the crop fields are more fragmented than in Fig. 2.   
 
In the previous segmentation results, segment shape criteria have been used (Beaulieu 2001). In 
hierarchical segmentation, the accuracy of the decision process is related to the segment sizes. 
The first merging steps are critical and are error prone because of the small segment sizes and the 
high noise level of SAR images. If the first segments are not correctly delimited then the 
following steps will merge segments from different fields and produce contours delimiting 
speckle artefacts instead of the truth field boundaries. We use spatial constraints and contour 
shapes to improve the first segmentation steps. We have examined how the initial segments grow 
and developed criteria to control the spatial progression. See (Beaulieu 2001) for more details. 
 
As an image contains both homogeneous and textured areas, we need to combine both criteria 
into the same segmentation program. For example, the amplitude variation coefficient could be 
used to select the appropriate criterion. More research is needed to evaluate the contribution of 
each criterion and to combine them.  

 

 

Fig. 1.  Pseudo-color image of the Mer Bleu area (amplitude of hh, vv and hv, 800x600 pixels). 
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Fig. 2.  Segmentation with the homogeneous scene criterion (Eqs. 9-10) (2000 regions).  
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Fig. 3.  Segmentation with the textured scene criterion (Eq. 12) (2000 regions).  

CONCLUSION 

Image segmentation has been presented as a likelihood approximation problem. The best 
criterion is derived for a hierarchical segmentation process. The stepwise criterion is derived for 
polarimetric SAR image with homogeneous or textured scene. Good results are shown for a 
Convair-580 SAR image. 
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