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ABSTRACT 

Segmentation of polarimetric SAR image is a difficult problem. We show that image segmentation can be viewed as a 
likelihood approximation problem. The optimum criterion is derived for a hierarchical segmentation process. The 
stepwise criteria are derived for polarimetric SAR images. The methods currently used for classification or 
segmentation of polarimetric SAR images are based on the multivariate complex Gaussian model for homogeneous 
scene. Their performances are significantly degraded in the presence of spatial texture. The optimum criterion is derived 
for segmentation of K-distributed textured polarimetric SAR images. Good results are shown for Convair-580 SAR data 
collected over the Ottawa region, Canada. 

1. INTRODUCTION 

Segmentation of SAR (Synthetic Aperture Radar) images is greatly complicated by the presence of coherent speckle.  
All the methods currently in use for classification or segmentation of polarimetric SAR images are based on the 
multivariate complex Gaussian model [1], [2], [3]. Since their performances are significantly degraded in the presence 
of spatial texture, the application of these methods should be limited to “homogeneous” Gaussian areas. 

In this study, a new method based on the hierarchical stepwise optimization is introduced for segmentation of K-
distributed textured polarimetric SAR images. The product model is assessed and applied only within areas in which the 
model is valid. The general flowchart of the segmentation method is described in the following Section III. 

The main approaches to image segmentation are based upon classifications, edges or regions.  Image segmentation 
could result from the classification or the labelling of each pixel.  Pixel classification does not involve generally the 
spatial aspect [4].  The image partition is a side effect of the classification.  Markov random field and texture models 
have been used to include the spatial aspect into the class probabilistic models [1], [2].  An edge detection process could 
also be used to define the boundaries of segment in which the signal is a wide-sense stationary process [5], [13]. 

We consider that truth image segmentation processes are based upon regions.  The goal of the process is to identify 
regions (segments) that satisfy some criteria.  Spatial aspects are involved in the criteria.  It is often defined as 
hierarchical segmentation.  A typical agglomerative approach involves the sequential growing of regions.  The first 
techniques used threshold-based decision.  More powerful techniques now use iterative optimization processes [6], [7], 
[8]. 

2. IMAGE SEGMENTATION AS A LIKELIHOOD APPROXIMATION PROBLEM 

Image segmentation could be viewed as the transformation of the original image into a more complex description. The 
image is represented by a set of regions or segments. Each segment is described by a set of parameters, which are 
selected according to suitable image models. These models can be used to evaluate the image description or the 
segmentation result. A good description should explain the observed pixels values.  

2.1 Maximum likelihood approach 

Following a statistical approach, the image segmentation could be presented as a maximum likelihood estimation 
problem. Let xi be the value of pixel i. The probability density function (pdf) of xi is function of the segment S that 
contains the pixel i, (i∈S). The pdf are described by a set of parameters, θ. For the segment S, the pdf of xi is p( xi | θS ). 



We assume that the pdf of xi is only a function of θS and is conditionally independent of other pixel values. Let X be the 
set of pixel values for the whole image, X = { xi | i∈I }. Let ΘP be the set of all θS for the partition P, 
ΘP = { θS | S∈P }. The likelihood function of ΘP and P given X is  

 ( , | ) ( | , )P PL P X p X PΘ = Θ . (1) 

We could write the equation as a product of pixel pdfs because the probabilities of pixels are conditionally independent.  

 ( )( , | ) ( | )P i S i
i I P

L P X p x
∈

Θ = θ∏  (2) 

S(i) is the segment containing the pixel i and the parameters are evaluated for the partition P. The parameter values that 
optimize the log likelihood function also optimize the likelihood function.  

 ( ) ( )( )ln ( , | ) ln ( | )P i S i
i I P

L P X p x
∈

Θ = θ∑   (3) 

In the maximum likelihood approach, we want to find the partition P and the segment descriptive parameters ΘP that 
optimize the likelihood function. The likelihood function evaluates the probability of observing the pixel values X when 
the segments of the partition P are described by the parameters θS. The probability is a measure of the correspondence 
between the description and the image data. The best description is used to estimate the truth state of the nature.  

2.2 Best parameter evaluation 

For a segment S, the parameters θS could usually be evaluated from statistics calculated over the segment. For a given 
partition P, the log likelihood function value for the best parameters ΘP could be defined as LLF(P) and could be 
calculated rapidly.  The function could be written as a sum of the maximum log likelihood values for each segment.  

 ( )( ) ln ( , | ) ( )P
S P

LLF P L P X MLL S
∈
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where 
 ( )( ) ln ( | )i S

i S
MLL S p x

∈
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Eq. 4 shows that the difficult part of the optimization process is to find the best partition. Once we have a partition, it is 
easy to calculate the best descriptive parameters for this partition. 

2.3 Finding the best partition 

We cannot explore all image partitions with k segments to find a global optimum. A hierarchical framework is used to 
restrict the exploration space. In hierarchical segmentation, we start with an initial partition Pn and then produce a 
sequence of partition Pn … Pk+1, Pk … P1 by merging two adjacent segments at each iteration. The partition Pk is 
produced by merging two segments of Pk+1. The optimization of LLF results then into a stepwise optimization process 
that finds the best merge at each iteration. This is a sub-optimum approach with the hierarchical segment merging 
constraint. 

The used stepwise criterion should measure the decrease of LLF. If we consider the merging of segment Si and Sj from 
partition Pk+1 to produce the segment Su (= Si∪Sj) in partition Pk then the difference between LLF(Pk+1) and LLF(Pk) 
will only involve the segment Si, Sj and Su.  

 , ( ) ( ) ( )i j i j uSC MLL S MLL S MLL S= + − . (6) 



At each iteration, we should merge the segments that minimize the  SCi,j criterion.  

3. POLARIMETRIC SCENE-SPECKLE STATISTICS 

The polarimetric scattering matrix measured by a polarimetric SAR consists of four complex elements. For a reciprocal 
medium, the two cross-polarized terms are identical and the polarimetric feature vector x has only three unique complex 
elements, x = (hh, hv, vv)T, where, for instance, hv is the horizontally polarized return signal, given that the transmitted 
signal is vertically polarized.  

3.1 Homogeneous scene 

For a homogeneous scene, the vector x is complex Gaussian-distributed with a covariance Σ = E[ x xH]. E[ ] denotes the 
expectation operator and the superscript H indicates the complex conjugate transpose. 

 ( )1
3
1( | ) exp Hp x x x−Σ = − Σ

π Σ
 (7) 

For a segment S with ns pixels, the best estimate of the covariance matrix Σ is the sample covariance matrix, Cs [9].  

 1ˆ H
S

x SS
C x x

n ∈
= Σ = ∑  (8) 

The maximum likelihood value for this segment is   

 ( ) 3( ) ln ( | ) ln ln 3S S S S S
x S

MLL S p x C n C n n
∈

= = − − π −∑ . (9) 

We obtain the stepwise criterion  

 , ( ) ln ln lni j i j Si Sj i Si j SjSC n n C n C n C∪= + − −  (10) 

where ni and nj are the sizes of segments Si and Sj. At each iteration, the hierarchical segmentation algorithm merges the two 
segments that minimize this criterion.  

For L-look image, we use the covariance matrix of the pixel Zk instead of the complex vector x and ( | )kp Z Σ instead of 
( | )p x Σ . Zk follows a complex Wishart distribution within a Gaussian area [9]. The stepwise criterion corresponds to 

Eq. 10 where the number of pixel of a segment is multiplied by the number of looks L. An equivalent criterion is used in 
[3] for statistical hypothesis testing and is derived from a likelihood ratio test. In the present likelihood approximation 
framework, the stepwise criterion is related to a global measure of the image partition quality.  

3.2 Textured scene 

At the presence of texture, the product model was used in [10], [11] to derive the statistics of the covariance matrix for 
gamma-distributed scene signal:  
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where α is the texture shape parameter and Σ is the covariance of the speckle without texture. Kν is the modified Bessel 
function. There is no direct solution to calculate the best estimates of α and Σ that maximizes the likelihood function for a 
segment S. Approximate solutions have been proposed and are used in the current implementation [12]. α is calculated by 



the Method of Moments (MoM) and ˆ CΣ = . Removing the terms that will be cancelled in the stepwise criterion, the 
maximum log likelihood is  
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where n is the number of pixels of segment S. The stepwise criterion is calculated by (6). To evaluate Eq. 12, each pixel 
of the segment should be visited.  

Unfortunately, this segmentation criterion is based on the product model that is limited to scenes where texture is 
independent of polarization [13]. A more general algorithm is currently being developed for segmentation of scenes in 
which the product-model is not valid.  

 

 

 

Fig. 1.  Pseudo-color image of the Mer Bleu area (amplitude of hh, vv and hv, 800x600 pixels). 

 

 



4. SEGMENTATION RESULTS 

The likelihood approximation approach for image segmentation have been implemented and tested on polarimetric SAR 
images. A polarimetric Convair-580 SAR data set was collected over the Ottawa region. A test region in the Mer Bleu 
area is selected. The initial 1-look image has a resolution of 4m x 0.43m. A resolution of 4m x 4.88m is obtained by 
taking the average of the covariance matrix of 9 pixels. The resulting image (800x600 pixels) is shown in pseudo-color 
in Fig. 1 using the amplitude of the hh, vv and hv channels.  

The image contains crop field areas and forest areas. Fig. 2 shows the result of the segmentation when Eqs. 9-10, which 
are derived from homogeneous scene statistics, are used. The figure shows a partition with 2000 segments. It shows that 
the partition is data driven. We should stress the hierarchical nature of the results and the difficulty to find an 
appropriate stopping point. For some parts of the image, more merging should have been done while, for other parts, 
less merging would be needed. Generally, field boundaries are correctly delimited. The segmentation is difficult task 
because of the importance of the noise in SAR images. The homogeneous scene criterion seems to give good results for 
crop fields. More merging is recommended for forest areas.  

Fig. 3 presents the segmentation produced by the textured scene criterion (Eq. 12). This criterion should be used for 
forest areas. Statistics of crop fields should be calculated and used to know if the field is homogeneous or not (e.g. the 
amplitude variation coefficient). In Fig. 3, we see that the textured scene criterion produces more merging in the forest 
areas. The segments in the forest areas are larger while the crop fields are more fragmented than in Fig. 2.   

 

 

Fig. 2.  Segmentation with the homogeneous scene criterion (Eqs. 9-10) (2000 regions).  



In the previous segmentation results, segment shape criteria have been used [8]. In hierarchical segmentation, the 
accuracy of the decision process is related to the segment sizes. The first merging steps are critical and are error prone 
because of the small segment sizes and the high noise level of SAR images. If the first segments are not correctly 
delimited then the following steps will merge segments from different fields and produce contours delimiting speckle 
artefacts instead of the truth field boundaries. We use spatial constraints and contour shapes to improve the first 
segmentation steps. We have examined how the initial segments grow and developed criteria to control the spatial 
progression. See [8] for more details. 

As an image contains both homogeneous and textured areas, we need to combine both criteria into the same 
segmentation program. For example, the amplitude variation coefficient could be used to select the appropriate 
criterion. More research is needed to evaluate the contribution of each criterion and to combine them.  

 

 

Fig. 3.  Segmentation with the textured scene criterion (Eq. 12) (2000 regions).  

 



5. CONCLUSION 

Image segmentation has been presented as a likelihood approximation problem. The best criterion is derived for a 
hierarchical segmentation process. The stepwise criterion is derived for polarimetric SAR image with homogeneous or 
textured scene. Good results are shown for a Convair-580 SAR image. 
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