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 

Abstract— A hierarchical stepwise optimization process is 

developed for polarimetric SAR image segmentation. We show 

that image segmentation can be viewed as a likelihood 

approximation problem. The likelihood segment merging 

criteria are derived using the multivariate complex Gaussian, 

the Wishart distribution, and the K-distribution. In the 

presence of spatial texture, the Gaussian-Wishart segmentation 

is not appropriate. The K-distribution segmentation is more 

effective in textured forested areas. The validity of the product 

model is also assessed and a field adaptable segmentation 

strategy combining different criteria is examined.  

 

Index Terms—Hierarchical image segmentation, maximum 

likelihood estimation, polarimetric SAR image, texture, Wishart 

and K distributions. 

I. INTRODUCTION 

N remote sensing, a segmentation process can be used to 

detect land fields and to improve pixel classification. In 

classification, a class number is assigned to each pixel. A 

segmentation process divides the image into distinct and self-

similar regions. The segmentation of SAR (Synthetic 

Aperture Radar) images is greatly complicated by the 

presence of coherent speckle. The complex structure of the 

SAR images requires the utilization of complex processes for 

segmentation and classification. They are based on scene and 

speckle models. There are well accepted models for 1 channel 

SAR images [1].  The speckle amplitude of homogeneous 

areas is represented by the Rayleigh distribution. The K-

distribution is used to model the backscattered radar intensity 

from a Gamma distributed scene such as forested areas [1]. 

Other distributions, such as the Weibull or the Lognormal 

distributions, are used to model various textures of SAR 

images [1]. 

Kong et al. [2] were the first to show that the full 

polarimetric measurements provide better classification and 
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segmentation than single channel measurements. The 

probability density function (pdf) of a complex Gaussian 

vector was used to derive the classification measure that 

optimizes the likelihood ratio test [2]-[4]. Lee et al. [5] use 

the Wishart distribution to derive a classification measure 

that can be applied to multi-look data. Skriver et al. [6] 

introduced a likelihood ratio test method for segmentation of 

polarimetric SAR images.  

The methods currently used for classification or 

segmentation of polarimetric SAR images are based on 

multivariate complex Gaussian or Wishart models. Such 

distributions are not appropriate for textured areas. In this 

study, a new segmentation method uses the K-distribution 

model to better preserve the Gamma-distributed texture. 

The main approaches to image segmentation are based 

upon classifications, edges or regions. Image segmentation 

can result from the classification or the labeling of each pixel.  

The main process is the classification of pixels where the 

spatial aspect is not usually considered [7]. The image 

partition is a side effect of the classification. Markov random 

field and texture models have been used to include the spatial 

aspect into the class probabilistic models [8], [9]. An edge 

detection process can also be used to define segment 

boundaries [10]-[14]. Watershed segmentation algorithms use 

gradient images [15], [13]. 

We consider that true image segmentation processes are 

based upon regions. The goal of the process is to identify 

regions (segments) that satisfy some criteria. Spatial aspects 

are involved in the criteria. A typical agglomerative approach 

involves the sequential merging of regions [6], [16]-[18]. The 

first techniques used threshold-based decision. More powerful 

techniques now use iterative optimization processes [19]-[22].  

Segmentation consists of the sequential merges of similar 

segments. Development of a segmentation process involves 

the definition of an appropriate segment similarity measure. 

A probabilistic approach is often used. The similarity measure 

is related to testing if the 2 segments belong to the same 

population. Likelihood ratio test is often used [6], [16]. For 

example, for the polarimetric complex Wishart distribution 

model, the equality of the covariance matrices is tested. 

Similar measures are used in pixel or region classification. 

However, in segmentation, the sizes of segments vary which 

introduces difficulties and differentiates it from classification. 

In classification, we have reliable class statistics again with 

Segmentation of textured polarimetric SAR 

scenes by likelihood approximation 

Jean-Marie Beaulieu, Member, IEEE, and Ridha Touzi, Member, IEEE 

I 



> < 

 

2 

the pixel or region statistics are compared. In segmentation, 

the statistics of 2 segments are compared and the result could 

be quite unreliable if the segments are small.  Furthermore, 

the evaluation is a difficult problem in segmentation. The 

goal is to divide the image into distinct self-similar regions. 

Classification error can not generally be used. This paper 

proposes a likelihood approximation approach. A likelihood 

measure of a partition is defined and used as a global 

objective function to optimize. In the hierarchical 

segmentation framework, the local segment merging criterion 

is derived from the global criterion. This ensures that each 

merging step does its best to optimize the global criterion.  

The next section presents a hierarchical segmentation 

algorithm based upon stepwise optimization. Image 

segmentation is then presented as a likelihood approximation 

problem. The stepwise optimization criterion is derived from 

the global likelihood partition measure. Segmentation of 

homogeneous polarimetric SAR images is examined in 

Section IV. Stepwise criteria are derived for the 

multidimensional complex Gaussian distribution and the 

complex Wishart distribution. Segmentation of textured 

image is examined in Section V. The segmentation criterion 

is derived for the K distribution. Segmentation results are 

then presented for Convair-580 polarimetric SAR data using 

the Wishart and K-distribution criteria. The partition log 

likelihood value is used for partition evaluation. Its variation 

with the partition size (number of segments) is shown. The 

last section discusses the validity of the different models. The 

segmentation strategy should self-adapt to the image field 

characteristics.  

II. HIERARCHICAL SEGMENTATION 

A. Region merging 

A segmentation is a partition P of the image plane I into k 

disjoint regions Si  I such that P = { S1, S2 … Sk }, 

Si  Sj =  for i  j and iS I . A region merging 

approach starts from small segments and sequentially merges 

them to produce larger segments [23], [24], [6], [16], [17]. 

The initial segments can contain only one pixel. A logical 

predicate, LP(), is used to decide if two adjacent segments 

could be merged. Si and Sj are merged if LP(SiSj) is true. 

For example, two segments are merged if the module of the 

mean difference is smaller than a threshold value. The 

algorithm stops when no more segments could be merged. 

Different partitions are produced by varying the threshold or 

the logical predicate parameters. The order of the 

comparisons has an important effect on the result. Different 

strategies can be used to guide the order of merges.   

B. The Hierarchical Stepwise Optimization algorithm 

In pattern recognition, the agglomerative hierarchical 

clustering algorithm is a generally used technique. It is based 

upon stepwise optimization: at each iteration, the two most 

similar clusters are selected and merged. The result of the 

clustering can be represented by a tree that reflects the 

hierarchical structure of the data. The addition of the 

hierarchical structure to a uniform (mean value) segment 

model provides a better description of remote sensing images. 

Crop fields and forest areas are composed of subparts that 

could be decomposed again [17].  

A segmentation algorithm derived from hierarchical 

clustering is now presented [25]. A segment similarity 

measure, SCi,j, is defined as the stepwise criterion to 

optimize. The algorithm can be defined as follows:  

i) Define an initial image partition.  

ii) For each adjacent segment pair, (Si, Sj), calculate the 

stepwise criterion, SCi,j; then find and merge the 

segments with the minimum criterion value.  

iii) Stop, if no more merges are needed;   

otherwise, go to ii).  

We call the algorithm "hierarchical segmentation" to stress 

the fact that the complete tree is calculated and meaningful 

partitions at any resolution level can be obtained by cutting 

the tree at the appropriate level. For example, partitions with 

500 to 5000 segments could be considered for a 1000x1000 

image.  

Many different merging strategies and ways of defining the 

merging order have been proposed [16]-[18], [6], [13]. A 

segmentation method based on a combination of radiometric 

and geometric criteria that permits to create a hierarchical 

network of regions with a predefined number of resolution 

levels is described in [17]. Different merging orders are 

examined in [18]. A segment hierarchy can also be produced 

by watershed segmentation algorithms [15], [13]. 

C. Global objective function 

Image segmentation can be presented as an optimization 

problem: find the partition P that optimizes a global objective 

function GOF(P). Segmentation techniques could limit the 

choice of GOF. It is particularly difficult to establish a 

relation between the GOF and local decisions (logical 

predicate or stepwise criterion). For example, the mean 

squared error around segment means can be used as GOF. In 

a hierarchical segmentation framework, the corresponding 

stepwise criterion was derived in [25]. In the next section, we 

extend this approach to the case where a segment is described 

by an arbitrary probability density function. The stepwise 

criterion is derived for a global likelihood estimation or 

approximation problem.  

III. IMAGE SEGMENTATION AS A LIKELIHOOD 

APPROXIMATION PROBLEM 

Image segmentation can be viewed as the transformation of 

the original image into a more abstract description. The 

image is represented by a set of regions or segments. Each 

segment is described by a set of parameters.  



> < 

 

3 

A. Maximum likelihood approach 

Following a statistical approach, the image segmentation 

can be presented as a maximum likelihood estimation 

problem. Let xi be the value of pixel i. The probability density 

function (pdf) of xi is a function of the segment S that 

contains the pixel i, (iS). The pdfs are described by a set of 

parameters, . For the segment S, the pdf of xi is p( xi | S ). 

We assume that the pdf of xi is only function of S and is 

conditionally independent of other pixel values. Let X be the 

set of pixel values for the whole image, X = { xi | iI }. Let 

P be the set of all S for the partition P, P = { S | SP }. 

The likelihood function of P and P given X is  

( , | ) ( | , )P PL P X p X P   . (1) 

We could write the equation as a product of pixel pdfs and 

take its logarithm.  

   ( )ln ( , | ) ln ( | )P i S i

i I P

L P X p x


     (2) 

S(i) is the segment containing the pixel i and the parameters 

are evaluated for the partition P. In the maximum likelihood 

approach, we want to find the partition P and the segment 

descriptive parameters P that optimize the likelihood 

function.  

B. Best parameter evaluation 

For a segment S, the parameters S can usually be 

evaluated from statistics calculated over the segment. For a 

given partition P, the log likelihood function value for the 

best parameters P could be defined as LLF(P) and could be 

calculated rapidly.  The function could be written as a sum of 

the maximum log likelihood values (MLL) for each segment:  

 

 

( )( ) ln ( | )

ln ( | )

( )

i S i

i I

i S

S P i S

S P

LLF P p x

p x

MLL S



 



 

 





 



 (3) 

where  

 ( ) ln ( | )i S

i S

MLL S p x


  . (4) 

Equation (3) shows that the difficult part of the 

optimization process is to find the best partition. Once we 

have a partition, it is easy to calculate the best descriptive 

parameters for this partition. 

C. Finding the best partition 

The importance of the number of segments k in the 

maximization of LLF(P) must be stressed. Let Pk be the best 

partition with k segments. Then, the LLF(Pk) function is 

monotonically nondecreasing with increasing number of 

segments for Pk (Fig. 1). The number of possible partitions is 

usually very large for any k value. It would therefore be 

prohibitive or impossible to find the true global optimum 

partition Pk. There are two limit cases. When there is one 

pixel per segment, the number of segments is equal to n, the 

number of pixels in the image. There is only one possible 

partition with n segments. This partition has the highest log 

likelihood value. The log likelihood value can only decrease 

or stay unchanged when we decrease the number of segments. 

The other limit case is when k equal one. There is only one 

partition with one segment (the whole image) and this 

partition has the lowest log likelihood value.  

In hierarchical segmentation, we start with an initial 

partition Pn and then produce a sequence of partitions 

Pn … Pk+1, Pk … P1 by merging two adjacent segments at 

each iteration. The partition Pk is produced by merging two 

segments of Pk+1. Let Dq be the decrease of the log likelihood 

value from Pq+1 to Pq.  

1( ) ( )q q qD LLF P LLF P   (5) 

The value of LLF(Pk) could be related to the values of Dq for 

q = k…n-1.  

1

( ) ( )
n

k n q

q k

LLF P LLF P D




   (6) 

To maximize LLF(Pk), we need to minimize each term Dq of 

the summation (Fig. 2). This is the goal of the stepwise 

optimization process. The stepwise criterion can be derived 

from the minimization of Dq. The Pk partition produced by 

the stepwise optimization algorithm is not a global optimum. 

We have not explored all the partitions with k segments. The 

stepwise optimization only examines the partitions produced 

by merging two adjacent segments of the Pk+1 partition. The 

number of examined cases is equal to the number of adjacent 

segment pairs in the Pk+1 partition. The stepwise optimization 

algorithm is a sub-optimum approach with the hierarchical 

segment merging constraint.  

D. Stepwise criterion 

At each iteration, the stepwise optimization algorithm 

should merge the two segments that produce the smallest 

decrease of the log likelihood function. For the partition Pk+1, 

LLF(Pk+1) is equal to the sum of MLL(S) for all segments of 

Pk+1 (see (4)). If we consider the merging of segment Si and Sj 

from partition Pk+1 to produce the segment Su (= SiSj) in 

partition Pk then the difference between LLF(Pk+1) and 

LLF(Pk) will only involve the segments Si, Sj and Su.  

, ( ) ( ) ( )i j i j uSC MLL S MLL S MLL S    (7) 

SCi,j is the stepwise criterion.  At each iteration, we should 
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merge the segments that minimize this criterion.  

IV. SEGMENTATION OF POLARIMETRIC SAR IMAGE 

A. One-look and multi-look speckle models for a 

homogeneous (non textured) scene 

 One-look polarimetric SAR images are generally provided 

under the scattering matrix format. For a reciprocal medium, 

the cross-polarization hv and vh are identical and the 

backscattered radar signal from each resolution cell might be 

characterized by the tri-dimensional vector x, x = (hh, hv, 

vv)T, where hv denote a transmitting antenna horizontally 

polarized and a receiving antenna vertically polarized. For a 

fully developed speckle in a homogeneous (spatial texture 

free) area, x might be assumed to be a zero mean circular 

complex Gaussian process with a probability density function 

(pdf) given by [26]: 

 1

3

1
( | ) exp Hp x x x   

 
 (8) 

where  = E[ x xH] is the covariance matrix, E[ ] denotes the 

expectation operator and the superscript H indicates the 

complex conjugate transpose. This model was first used by 

Kong et al. [2] as the basis for their polarimetric 

classification process developed for 1-look SAR images. 

Polarimetric SAR data might also be provided under the 

multi-look format. Each single look scattering matrix is 

transformed into a Mueller matrix, and the average of the L 

single-look Mueller matrices is assigned to each multi-look 

pixel [27].  The L-look averaged Mueller matrix is completely 

characterized by L-look covariance matrix Z =< x xH>, and 

each pixel k should be represented by its L-look covariance 

matrix, Zk. The pdf of Zk was derived in [26] under the 

assumption that speckle is fully developed and is a zero mean 

circular complex Gaussian process. The Zk pdf is the Wishart 

distribution [26], 

  3 1exp
( | )

( )

L

k k

k L

Z L tr Z
p Z

Q L

  
 


 (9) 

with 

3 3( ) ( ) ( 1) ( 2) LQ L L L L L        (10) 

The Wishart distribution has been widely used as the basis of 

classification and segmentation methods for multi-look SAR 

data [6], [8]. 

B. One-look polarimetric stepwise criterion 

For the segmentation of one-look polarimetric images, we 

use (8) and consider that the vectors x are the pixel values 

and the segment descriptive parameters are the covariance 

matrices. For a segment S with nS pixels, the best estimate of 

the parameter  is the sample covariance matrix, C.  

1ˆ H
S

x SS

C x x
n 

     (11) 

Knowing the best estimate value for a region S, we 

combine (4), (8) and (11) to obtain the maximum likelihood 

value for this segment.  

 1

3

3 1

3 1

3

1
( ) ln exp

ln ln

ln ln

ln ln 3

H
S

x S S

H
S S

x S

H
S S S S

x S

S S S S

MLL S x C x
C

C x C x

n C n x C x

n C n n













 
    

      

    

    







. (12) 

We obtain the stepwise criterion for merging segments Si and 

Sj by substituting (12) into (7).  

, ( )ln ln lni j i j Si Sj i Si j SjSC n n C n C n C     (13) 

ni and nj are the sizes of segments Si and Sj. At each iteration, 

the hierarchical segmentation algorithm merges the two 

segments that minimize this criterion.  

C. Segmentation of multilook polarimetric image 

In hierarchical segmentation, the merging process starts 

from an initial partition. For one-look images, it is difficult to 

start from one-pixel segments. The image can be divided into 

disjoint cells of L pixels and these cells will define the initial 

partition. These cells can be viewed as the pixels of a L-look 

image.  Therefore, for L-look image, we can use the stepwise 

criterion of (13) where ni is the number of pixels of segment 

Si multiplied by the number of looks. ni represents the number 

of signal samples inside segment Si. 

We can also derive the stepwise criterion from the Wishart 

distribution of covariance matrices (9). The best likelihood 

estimate of  for the segment S is  

1
S k

S k S

C Z
m 

   (14) 

where mS is the number of pixels in segment S. The 

maximum log likelihood value of segment S is  

 

 

( ) ln ( | )

ln ( 3) ln

3 ln ( )

k S

k S

S S k

k S

S S

MLL S p Z C

Lm C L Z

Lm m Q L







   

 



  (15) 

The stepwise criterion is  

, ( ) ( ) ( )

( )ln ln ln .

i j i j i j

i j Si Sj i Si j Sj

SC MLL S MLL S MLL S S

L m m C Lm C Lm C

   

   
 (16) 
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This criterion is equivalent to (13) where i in L m .  

D. Comparison with hypothesis testing 

A statistical hypothesis testing approach can be employed 

for image segmentation. The likelihood ratio test has been 

used by many authors for SAR image segmentation [6], [16]. 

The segmentation method proposed in this paper is equivalent 

to region merging based on likelihood ratio test with an 

optimized merging order, where the least different couple of 

neighboring regions (according to the test) is merged in each 

step [6], [16]. For polarimetric images, two segments can be 

merged if their covariance matrices are not significantly 

different, which means that the observed sample covariance 

matrices are likely to belong to the same population. The test 

statistic is then equivalent to SCi,j of (16), [6], [28].  

V. TEXTURED SCENE AND K DISTRIBUTION 

The complex Gaussian and Wishart distributions were 

derived to model pure fully developed speckle that is a zero 

mean complex circular Gaussian process. At the presence of 

spatial texture, the circular Gaussian assumption is no longer 

valid, and both the complex Gaussian and Wishart models 

cannot be used. In textured areas, the “polarimetric” product 

model, which was first introduced by Yueh et al., is currently 

the most used speckle-scene model [29], [30]. 

A. K-distributed covariance matrix 

For textured areas, the product model was used in [31], 

[32], [1] to derive the statistics of the covariance matrix Yk for 

a gamma-distributed scene signal: 

 

  

3
32

3
1 2

1
3

( )
( | , )

( ) ( )

2

L
L

k
k L

L

k

L k

L Y
p Y

R L tr Y

K L tr Y











  

   

  

 (17) 

with  
31

2( ) ( ) ( 1) ( 2)R L L L L       , (18) 

where  is the texture shape parameter and  is the covariance of 

the speckle without texture. K is the modified Bessel function. 

B. Stepwise Criterion 

The segmentation stepwise criterion for the product model 

could be derived from (4), (7) and (17). After removing the 

terms that will be cancelled in the stepwise criterion, the 

maximum log likelihood value for segment S is 

 

  

   

1
2

-11
2

-1
ˆ3

ˆ ˆ( ) (3 ) ln

ˆln( ( )) ln( )

ˆ(3 ) ln

ˆln 2

k

k

k

Y S

L k

Y S

MLL S n L L

n nL C

L tr C Y

K L tr C Y







  

   

 

 





 (19) 

n is the size of segment S. ̂  and C are the best likelihood 

estimates of α and  for the segment S, i.e. the values that 

maximize (19). Unfortunately, there is no closed form 

analytical solution for the parameter estimates [33]. A 

numerical solution can be computed, but the computing time 

will be excessive for the segmentation process. We should 

stress that (19) involve summations over all pixels Yk of the 

segment S. The computing time grows with the size of the 

segment. This was not the case for (16) with the Wishart 

distribution.  

Alternate approximate solutions have been proposed [34]. 

The population speckle covariance matrix could be 

approximated by the sample covariance matrix, i.e. by the 

segment mean value of the signal covariance matrices.   

1
k

S k S

C Y
n 

   (20) 

The shape parameter α is estimated by the method of moment 

(MoM) [34]. From the 1-look data, we calculate the variation 

coefficients CV from the intensity of the hh, hv and vv 

components over the segment.  The shape parameter α is 

estimated by  

2ˆ 2 ( 1)CV    (21) 

VI. HIGH RESOLUTION SEGMENTATION 

The processing of polarimetric SAR images is difficult 

because of the large variance of the speckle multiplicative 

noise. We need to average over a large set of homogeneous 

pixels in order to obtain accurate measures. In hierarchical 

image segmentation, the resolution of the final partition is 

defined by the size of the initial segments. To have a good 

resolution, the initial segments should have few pixels. The 

sample covariance matrices of those segments will be very 

noisy. It will be difficult then to discriminate between regions 

with small value differences. To improve the results, we 

combine segment shape measures with the stepwise criterion. 

The covariance matrix model should also be adapted to small 

segments.  

A. Covariance matrix model 

The covariance matrix is defined by 3 real values (diagonal 

elements) and 3 complex values (correlation elements). The 

determinants of the sample covariance matrices are used in 

the stepwise criterion SCi,j of (16). When segments contain 
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only few samples or pixels, the correlation elements of the 

covariance matrix could be very noisy because of the presence 

of speckle [38]. Then, the value of the determinant will be 

unreliable. It is better to use a simpler data model that 

assumes homogeneous regions with no correlation between 

the x vector components, x = (hh, hv, vv)T. The criterion is 

calculated on each channel independently and summed 

together. This is equivalent to evaluating the determinant 

with only the diagonal elements. The segmentation process 

starts with the modified criterion and changes to the full 

matrix criterion for segment of 20 looks or larger. Weighting 

factors are used for a gradual transition.  

B. Segment shape constraints 

In hierarchical segmentation, the accuracy of the decision 

process is related to the segment sizes. The first merging 

steps are critical and are error prone because of the small 

segment sizes and the high noise level of polarimetric and 

SAR images. If the first segments are not correctly delimited 

then the following steps will merge segments from different 

fields and produce contours delimiting speckle artefacts 

instead of the true field boundaries. Spatial constraints and 

contour shapes have been used in image segmentation [17], 

[16]. The effect of the segment merging order on the spatial 

distribution and size of segments is examined in [18]. 

Watershed segmentation produces good segment shapes [15], 

[13]. We use contour shape constraints to improve the first 

segmentation steps. Details of the measure definitions and 

operations are given in [22]. We use the segment perimeter, 

the segment area and the contour length to define 3 contour 

factors, Cp, Ca and Cl. We define a bounding box containing 

SiSj: a rectangle with left and right sides corresponding to 

the minimum and maximum values of the x coordinate of the 

segment and with the top and bottom sides corresponding to 

the minimum and maximum values of the y coordinate. Cp is 

the perimeter of SiSj over the perimeter of the bonding box. 

Ca is the area of the bonding box over the area of the 

segment. Let lmin be the smallest of the contour lengths of Si 

and Sj and lcom the length of the common boundary. Cl is 

equal to (lmin lcom)/ lcom. For all the examples of Section VII, 

the stepwise criterion is scaled by the product of the 3 shape 

factors. Without these factors, the shapes and boundaries of 

produced segments are not well defined. The segments are 

not compact. They have irregular shapes with many branches. 

VII. RESULTS AND EVALUATIONS 

The likelihood approximation approach for image 

segmentation have been implemented and tested using 

polarimetric Convair-580 SAR data collected over the Ottawa 

region, Canada. A test region in the Mer Bleu area is 

selected. The initial 1-look image has a resolution of 5.6m x 

0.63m [39]. The covariance matrices of 9 pixels are averaged 

in azimuth to form a square pixel image that is presented in 

Fig. 3 using the amplitude of the hh, vv and hv channels. The 

image contains crop field areas and forest areas. 

A. Homogeneous model 

The homogeneous region model is first examined. The 

segmentation stepwise criterion (16) derived from the 

Wishart distribution is used. Fig. 4 shows a partition with 

2000 segments. It shows that the partition is data driven. We 

should stress the hierarchical nature of the results and the 

difficulty to find an appropriate stopping point. For some 

parts of the image, more merging should have been done 

while, for other parts, less merging would be needed. 

Generally, field boundaries are correctly delimited. The 

segmentation is a difficult task because of the presence of 

speckle in SAR images. The homogeneous scene criterion 

seems to give good results for crop fields. More merging is 

recommended for forest areas. 

B. Segmentation evaluation 

The likelihood approximation approach looks for the 

partition that optimizes the likelihood value (2). Therefore, 

the likelihood value can be used as an evaluation measure 

[35]. Fig. 5 shows the log likelihood value as a function of the 

number of segments of the partition. The total log likelihood 

value is divided by the image size to produce the average per 

pixel value. The value decreases when the number of 

segments is decreased by merging. It starts with 480,000 

segments of 1 pixel. After 240,000 merges, we have a 

partition with 240,000 segments with an average size of 2 

pixels. The first merges can be done with small decreases of 

the log likelihood value. The interesting part is for partitions 

with 500 to 10,000 segments where decreases are more 

important. Fig. 6 shows that the log likelihood value drops 

rapidly as segments get bigger. A log scale for the number of 

segments can provide a better representation, as shown in 

Fig. 7. The average log likelihood value for the 2000 segment 

partition is 23.8. The regular shape of the curves suggests that 

the segmentation process is appropriate to maximize the 

likelihood value. Similar curves are obtained with the K 

distribution criterion. 

The process gives to the user the choice of the stopping 

point. The stepwise criterion reflects low level signal 

description: the speckle statistics. On the other hand, the 

stopping point is more related to the user objective: what 

levels of details are needed by the application. The curves 

show that the user could use the average log likelihood value 

or the partition size to specify the stopping point.  

For a given partition, the log likelihood value can be 

calculated for each pixel of the image. A normalisation is 

needed if we want to use the resulting image to visually 

evaluate the partition. The likelihood corresponds to a 

probability density that is function of the distribution width. 

Large likelihood values will be observed in areas where the 

determinant of the covariance matrix is small. To remove this 

effect, we “normalize” the pixel values such that the 
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determinant of the segment covariance matrix is equal to one. 

For the Wishart distribution, we obtain the normalized log 

likelihood value of pixel Zk from (9): 

 

   

*

1

( ) ( 3) ln ln

ln ( )

k k S

S k

LL Z L Z C

L tr C Z Q L

  

 
 (22) 

Fig. 8 shows the normalized log likelihood image 

corresponding to the partition of Fig. 4. There are fluctuations 

produced by speckle. Information lost produced by assigning 

pixels to segments with different covariance matrices is also 

shown as dark linear features or spots. The quality of the 

segmentation is shown by the limited scope of the information 

lost.  

C. Textured model 

For a large part of the image, the homogeneous model is 

not appropriate. For example, forest areas are usually 

considered as textured regions. The segmentation stepwise 

criterion derived from the K distribution has been applied to 

the polarimetric SAR image. In the forest areas, there are 

more merging than with the Wishart criterion for partitions 

with the same number of segments. There are less segments 

and they are larger. The texture model is able to explain more 

important fluctuation of backscattered signal and the presence 

of structure, like the darker zones in the forest areas that 

could be shadow effects. This flexibility of the model could 

make it more difficult to discriminate the roads from the 

surrounding forest.  

In order to obtain more valuable results, we should use both 

criteria: apply the Wishart criterion in homogeneous areas 

and the K distribution criterion in textured areas. How to 

combine the two criteria in a hierarchical segmentation 

process is an open question. We now present a first attempt to 

show that good segmentation results can be obtained. Further 

researches are needed to define a well sound process. The 

texture parameter α is used to discriminate between 

homogeneous and textured segments. We use a threshold 

value of 15 with a gradual transition zone of ±5. The Wishart 

criterion is used if α > 20. The K distribution criterion is used 

if α < 10. A weighted combination is used in the transition 

zone. The result for 2000 segments is shown in Fig. 9. In the 

forest areas, in the middle of the image, the result is better 

than in the Wishart partition of Fig. 4. The forest segments 

are larger. More fragmentation is observed in other areas in 

order to maintain the same total number of segments. This 

example shows the advantage of using the K distribution 

criterion for textured fields.  

In both images, there are problems with road detection. 

Since segmentation is based on statistics computed within 

areas of stationary scene signals, areas of nonstationary 

signals, such as curvilinear features, should be treated 

separately [11]. This was done, for example, by Walessa and 

Datcu who used a combination of edge detection and region 

growing in their segmentation [36]. Segmentation with the K 

distribution criterion required much more computing time 

than the Wishart criterion, 44.4 minutes versus 10.5 seconds 

with a Pentium 4 processor, 3.0 gigahertz.   

VIII. LIMITATION OF THE K-DISTRIBUTION MODEL 

The likelihood segment merging criteria was derived using 

the K-distribution. This would suppose that: 

1. the product model is valid, and 

2. the scene signal is Gamma distributed. 

The product model assumes that texture is independent of the 

channel of polarization. Most of the authors have assumed 

that this is valid [1], [31]. Sheen and Johnson [37] showed 

experimentally, using polarimetric SAR data, that this 

statement might not be true. The product model assumption 

has been assessed here within a forested area using the 

Convair-580 SAR data set. The coefficient of variation is 

computed for each channel within sufficiently large windows 

(more than 1000 independent samples). The dynamic range 

of the coefficient of variation reaches for given samples 5% to 

6%, as seen in Fig. 10. This demonstrates that the texture 

might be polarization dependent, and as such, the product 

model assumption is not all the time valid.  

Consequently, the product model should be assessed prior 

to the application of the segmentation. In addition, the scene 

signal intensity should be Gamma distributed. This property 

has been accepted for forested areas, and the K-distribution 

segmentation should be limited to such areas under the 

condition that the product model is valid. We are developing 

a segmentation strategy that will self-adapt to the area 

characteristics. In the future, the likelihood segment merging 

criteria will be derived for other distributions (lognormal, 

Weibull …) in order to extend the use of the segmentation 

algorithm to more varieties of texture, under the product 

model assumption. The process of combining the different 

texture models in the segmentation strategy will be carefully 

examined.  

IX. CONCLUSION 

A general powerful segmentation approach based upon 

likelihood approximation has been presented. Its adaptation 

for segmentation of homogeneous and textured scenes was 

shown. Better results are obtained with the K-distribution 

segmentation than with the Gaussian and Wishart 

distribution within textured areas. The likelihood criteria 

should be derived for other texture models to extend the 

application of the segmentation. The product model is only 

limited to texture that are independent of polarization. A 

more general model that takes into account polarization 

texture dependence is currently being developed, and will be 

integrated in the segmentation to extend its application to a 

wider range of targets. The most well known classification 

techniques, which are also based on the Gaussian and 
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Wishart model, should be also improved by integrating more 

suitable texture models. 
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Fig. 1.  Log likelihood value of the best partition as a function of the number of 

segments. The log likelihood value can only decrease or stay unchanged when 

we decrease the number of segments.  

 

 
Fig. 2.  Maximization of the log likelihood value in hierarchical segmentation. 

We minimize the decrease of the log likelihood function at each segment 

merging in order to maximize the log likelihood value of the final partition. 

 

 

 

 

 

 

Fig. 3. The image of the Mer Bleu area (600x800 pixels).  The amplitudes of the hh channel (left) and the vv channel (right) of 9-look polarimetric SAR data are 

shown. The image is obtained from polarimetric Convair-580 SAR data collected over the Ottawa region, Canada. 
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Fig. 4. Partition with 2000 segments produced by the Wishart stepwise criterion. 
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Fig. 5. Average log likelihood of a partition as a function of the number of 

segments for the Wishart model. 
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Fig. 6. Average log likelihood values for partitions that have a number of 

segments between 1 and 10,000. 
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Fig. 7. Average log likelihood values as a function of the log of the partition size. 
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Fig. 8. Normalized log likelihood image for the partition of Fig. 4. 

 

 

Fig. 9. Partition with 2000 segments produced by the combination of the Wishart 

and K distribution stepwise criteria. 
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Fig. 10. Between channel dynamic range of variation coefficient for a forest area. 

 

 




