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Abstract

The survey of image segmentation considers four different ap-
proaches: pixel classification, pixel linking and region growing,
hierarchical segmentation, and segmentation optimization. A
new Hierarchical Stepwise Optimization (HSO) algorithm is pro-
posed, which combines these last two approaches, The algorithm
employs a sequence of optimization processes to produce a hier-
archical segmentation. Starting with an initial image partition,
two segments are then merged at each iteration by using an op-
timization process to select the segment pair that minimizes a
"stepwise criterion." The algorithm is then employed for piece-
wise image approximation where the stepwise criterion is derived
from the global criterion, the overall approximation error. The
stepwise criterion is then related to statistical hypothesis testing,
and it is shown how the probability of error can be minimized
in a stepwise fashion. It is also shown experimentally how con-
venient stopping points in the hierarchy can be found from the
criterion values. Different criteria are tested on Landsat and
SAR imagery.
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Preface

Even after more than 35 years, I think that the thesis will make
a good reading. I did hope to have the text converted to a
modern document file format instead of a simple binary scan of
the thesis. In the new edition, a modern proportional spacing
font is used instead of a mono space font. Latex is used to have
better equation rendering. The figures are gray level scans from
the original paper document. The word "picture" is replaced by
"image," "step-wise" by "stepwise," "HSWO" by "HSO" and few
other modifications. Otherwise, the original text is preserved.
To have a book like format, B5 paper size is used, with a narrow
margin.

Jean-Marie Beaulieu
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Chapter 1

INTRODUCTION

An image can be considered as a 2-dimensional function, f̄(x, y), where
the domain corresponds to the image plane and the range to the gray level
intensity. In a digital image, the plane is divided into elementary regions,
called pixels, identified by the spatial coordinates (x, y), I = {(x, y)}. The
word pixel is often used to designate not only the elementary region (x, y)
but also the associated spectral value f̄(x, y). Note that for colour and
multi-spectral images, f̄(x, y) is a vector.

Image segmentation is the division of the image into different regions,
each having certain properties. For example, in Figure 1.1 the pixels with
the same gray level are merged to form regions. A segmentation involves
a partition P of the image plane I into disjoint regions or segments S, i.e.
P = {S1, S2 . . . Sn} such that ⋃Si = I and Si ∩ Sj = ∅ for i ̸= j. It also
implies a description of each segment. In the example, each segment could
be described by its gray level value. In more complex cases, a segment
could be represented by the mean value; the probability distribution of gray
levels p(f̄) inside a segment; the functional approximation parameters; the
segment shape parameters; to give but a few examples. Once the pixel
set that forms a segment is known, it is generally easy to calculate the
descriptive parameters. However, the determination of the image partition
that will yield segments with some predefined properties is a more complex
and difficult problem.

Image segmentation employs many of the approaches and techniques
of pattern recognition such as data classification and clustering. Hence,
image segmentation can be regarded as the recognition of segment patterns.
However, image segmentation possesses its own difficulties; namely, the large
size of the image and the spatial relationship between pixels.

Pattern classification and clustering involves separating data or patterns,
v̄i, into classes or clusters. A sample pattern v̄i is considered as a point

1



Chapter 1. INTRODUCTION 2

Figure 1.1: Image segmentation: a) pixel values, b) image
partition and segment descriptions.

in an n-dimensional sample, or feature space, V = V 1 × V 2 × . . . V n, v̄i =
(v1

i , v2
i . . . vn

i ) and v̄i ∈ V . Classification techniques assign a class to a sample
according to its position in the feature space V , while clustering techniques
attempt to separate and identify clumps of sample points.

In image segmentation, it is impossible to consider the whole image as
a sample pattern because of the size of the image. Instead, each pixel is
regarded as a sample pattern, v̄i, in an n-dimensional space, each dimen-
sion corresponding to a different colour or spectral band. The information
contained in the set {v̄i}, without consideration of pixel position, is called
the spectral information. Classification and clustering techniques can then
easily be applied to these spectral values {v̄i}.

The spatial information of an image concerns the inter-relation between
pixels, or the dependence of a pixel value on its position and on the values of
its neighbours. The spatial information is an important aspect of an image,
and must be taken into account if good image segmentation results are to
be expected. It is shown that classification or clustering techniques can still
be used for image segmentation if the spatial information is included as new
features or in the distance measures used.

The first part of this thesis consists in a survey of image segmentation
techniques, while the second part presents a new hierarchical segmentation
algorithm. In the survey, four general approaches for image segmentation
are distinguished according to the adopted definitions of segment :

1) Pixel classification (Chap. 2)
A region is assumed to be composed of pixels belonging to the same

statistical population or class, each class having a specific pixel value range.
Spatial aspects are included by the addition of feature values to the pixel
gray level values. Statistical decisions are used to find the class membership
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of each pixel. Pixels with the same class label are grouped to form regions.
Histograms can be used to estimate the class probabilities and thresholds
can be employed for the assignment of class labels.

2) Pixel linking and region growing (Chap. 3)
A region is considered as a group or clump of pixels in a combined spatial-

spectral space where both the spatial and spectral distances between pixels
inside a region (cluster) must be small. This implies that the pixels must
be adjacent and have similar gray levels. In pixel linking, a pixel-to-pixel
measure is used to join a pixel with its closest neighbours. Whereas, a
region growing approach relies upon a pixel-to-region measure for annexing
the neighbouring pixels which are similar.

3) Hierarchical segmentation (Chap. 4)
The image regions are assumed to form a hierarchy. The hierarchy is

produced by the merging or splitting of segments. A predicate is employed
to determine if a segment must be divided into sub-parts, or if it must be
merged with an adjacent one. The predicate evaluates the similarity of
segments in considering, for example, the segment means and variances, or
the weakness of segment boundaries.

4) Optimal image segmentation (Chap. 5)
It is often desired that the image regions satisfy a global or overall re-

quirement. Such a requirement is usually defined by a cost function (global
criterion) and an optimization process is then used to find the best solution.
The segment approximation error, the image roughness, and the segment
contour smoothness, are examples of criteria used in image segmentation.
In practice, locating the global optimum partition is not feasible. In its place,
two techniques have been proposed: the utilization of one-dimensional op-
timization techniques and the finding of a local optimum from an initial
image partition by iterative processes.

Image segmentation algorithms have already been reviewed in many
other papers [12], [25], [26], [31], [38], [60], [76], [77], [102]. Each emphasizes
different aspects of the image segmentation problem and uses a different
manner to classify algorithms. For example, Kanade [38] identifies three
levels of knowledge, that segmentation algorithms can exploit: the signal,
the physical and the semantic level. Fu and Mui [25] distinguish three cate-
gories of segmentation techniques: 1) characteristic feature thresholding or
clustering, 2) edge detection, and 3) region extraction. Rosenfeld and Davis
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[77] regard the assumptions or models that an image should satisfy in order
to apply a particular technique. They examine statistical and spatial mod-
els. The present survey complements the preceding ones by comparing the
segmentation algorithms with those for data classification and clustering.
This allows the exploitation of knowledge about data clustering for char-
acterizing the image segmentation algorithms. This can also be useful for
suggesting a new exploratory area.

It should be noted that the chosen classification scheme involves only
general low-level ways for describing regions or image segmentations. Knowl-
edge driven, expert systems, ad-hoc constructs and heuristic programmings
that adapt a program to a particular application are not discussed.

The second part of the thesis presents a new hierarchical segmentation
algorithm based upon sequential optimization. The algorithm starts with
an initial image partition, and at each iteration, merges two segments. An
optimization process is used to select the segment pair that minimizes a
stepwise criterion, Ci,j corresponding to the cost of merging the segment Si

with the segment Sj. The properties of this algorithm and its operation on
real data are analysed in detail. It is shown that the algorithm is a valuable
tool, and produces good segmentation results.

The contributions of each chapter of the second part are now outlined.

1) A hierarchical image segmentation algorithm (Chap. 6)
The Hierarchical Stepwise Optimization algorithm (HSO) is described

in detail. The algorithm is designed so as to reduce the computing time.
An essential reduction results from the fact that only adjacent segments
can be merged. Moreover, recalculations are avoided by making explicit the
information needed, and by updating only the values that are modified by
a segment merger. The HSO algorithm is also compared with hierarchical
segmentation algorithms based upon predicate equations.

2) Optimization and segment hierarchy (Chap. 7)
Image segmentation can advantageously be stated as a global optimiza-

tion problem. The finding of the global optimum is generally not feasible.
The stepwise optimization (HSO) algorithm is therefore presented as a sub-
optimal alternative. The stepwise criterion is then derived from the global
criterion, and equated to the increase of the global criterion produced by
the merging of two segments.

3) Probability of error in hierarchical segmentation (Ch. 8)
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Image segmentation can be regarded as a hypothesis testing process
which merges two segments only if they belong to the same region. For
hierarchical segmentation, the advantages of minimizing the probability of
dissimilar segment merges, at each step, are stressed. This is achieved by
the proposed stepwise optimization (HSO) algorithm which finds and merges
the most similar segment pair. The probability of stepwise error (i.e. the
probability of merging dissimilar segments) is also calculated.

4) Algorithm operation and criterion selection (Chap. 9)
The operation of the segmentation algorithm on remote sensing images is

analysed. In particular, the selection of a stopping point for the algorithm
is examined. The problem of selecting the appropriate segment models
and the corresponding stepwise criteria are also discussed and illustrated by
experiments on a Landsat satellite image. The algorithm is shown to be
capable of adaptation to different segmentation tasks.



Part I

Survey of Image
Segmentation
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Chapter 2

Pixel Classification

Classification techniques play an important role in pattern recognition and
image analysis [17], [25], [77]. The classification approach assumes that
an observed sample or pattern v̄i has been generated by a unknown class
or population from a set of n possible classes, C1, C2, ...Cn, with known
characteristics. A classification process examines the value of the sample v̄i

to identify the class Ck.
A simple model for image segmentation can be derived from the classifi-

cation approach. It assumes that a region is composed of connected pixels
belonging to the same class Ck. Moreover, it supposes that the observed
pixel values v̄i = f̄(xi, yi) are only dependent upon their class memberships.
Therefore, the segmentation problem reduces to discovering (or estimating)
the true class memberships of pixels from their observed values v̄i. Figure
2.1 represents a pixel classification process where the decision consists in as-
signing a class label to each pixel. The parameters required for the decisions
are given by the user and/or calculated from the data.

For example, Figure 2.2 shows one line of a remote sensing image (the
.60-.70 urn band of a Multi-Spectral Scanner image taken by the Landsat-I
satellite in August 1972, frame E-1031-17265). Two classes can be con-
sidered: water and vegetative cover. Knowing that water produces lower
values than vegetation, the central low value pixels (lower than 25) can be
regarded as water, the other ones as vegetation. Regions are then formed
by connecting pixels belonging to the same classes. Thus, the regions are
strictly defined by the classes.

In the following sections, it is first shown that pixel classification can
be regarded as a statistical decision process, where the classes are defined
by their probability density functions. Classification techniques based upon
the spectral histograms which are used to estimate the probability density
functions are then considered. The exploitation of the spatial information

7
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Figure 2.1: Block diagram of a pixel classification process.
The decision parameters are first calculated from the data
under user control. Then, the decision assigns a class label
to each pixel.

Figure 2.2: Intensity levels of one line of a remote sensing
image.

by the addition of new features is examined. Finally, the limitations of this
approach are discussed.

2.1 Statistical decision
Statistical decision can be used to estimate the class membership of an
observed sample value v̄i [17]. Classes are then viewed as statistical popula-
tions, defined by their probability density functions P (v̄i|Ck). These density
functions are used to determine the class membership for the pixel value v̄i.
For example, a maximum likelihood classifier selects the class which maxi-
mizes P (v̄i|Ck), but the expected class Ck will not always correspond to the
true class. Figure 2.3 presents two density functions, P1 and P2, associated
with two classes, C1 and C2. Let C2 be the true state of nature, and suppose
that the sample v̄ has been drawn. P1(v̄) is higher than P2(v̄), and therefore
the class C1 is selected, producing a classification error. Such classification
errors can be avoided only when the probability densities P (v̄|Ck) do not
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Figure 2.3: The probability density functions of two classes.
Note the overlapping of density functions, v represents a
sample point, and t is a threshold value.

Figure 2.4: Overlapping of probability density functions
in one and two dimensional spaces. There is more overlap
for both the horizontal and vertical projections than for the
oblique projection. However, the two-dimensional density
functions show less overlap.

overlap.
Classification error reduction can result from the appropriate selection

of variables or data features. For example, in Figure 2.4, the oblique pro-
jection produces two relatively distinct one dimensional density functions.
Whereas, there is much overlap for both the horizontal and vertical projec-
tions. Addition of new dimensions to the sample vector v̄i can also be used to
reduce classification errors. For example, in Figure 2.4, the two-dimensional
probability density functions show less overlap.
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Figure 2.5: Histogram of 20 lines per 55 pixels of a remote
sensing image. One line of the image is shown in Figure
2.2. The left mode corresponds to water area, and the right
mode to vegetative cover.

2.2 Histogramming
In many applications, the class conditional probability density functions
P (v̄|Ck) are unknown, and must be estimated from the data. The histogram
h(v̄) is generally used as an estimate of the composite probability density,

h(v̄) =
∑
m

p(v̄|Cm) P (Cm) (2.1)

It is usually assumed that the conditional densities P (v̄|Cm) are unimodal,
and that the composite probability density is composed of many well distinct
modes, one for each class. Hence, it is possible to identify these modes in
the histogram h(v̄) , and use them to estimate P (v̄|Ck) [17].

A classification process can also be defined by a partitioning of the sample
space [17], [91]. For example, in Figure 2.3, a maximum likelihood classifier
assigns any sample v lower than t to class and those higher to class C1 and
those higher to class C2. The histogram modes can therefore be employed to
define such a partitioning of the sample space. In 1-D histograms, threshold
values are used to divide the sample space into regions centered on these
modes. As an example. Figure 2.5 shows the histogram of a remote sensing
image (the .60-.70 um band of a Multi-Spectral Scanner image taken by
the Landsat-I satellite in August 1972, frame E-1031-17265). The left-most
mode corresponds to a water area. A threshold value located in the valley
between modes, can be used to discriminate between water and vegetation.
There are many well known techniques for threshold selection or spectral
space partitioning [95], [94], [26], [42].

The quality of the histogram is important for class estimation and pixel
classification. A large number of samples is needed to obtain a good estimate
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Figure 2.6: 1-D functions composed of one region (a), two
regions (b), and four regions (c). The histograms (d) of these
functions are identical.

of the composite probability density function, and the required number of
samples grows exponentially with the number of dimensions of the sample
space [43]. Therefore, in many cases, dimension reduction techniques must
be employed [28], [13].

There are many applications where the utilization of the gray level value
alone can be sufficient to discriminate between regions. In medical applica-
tions, for instance, the cytoplasm, the nucleus and the background of blood
cells can be differentiated [4], [73], Color information can also be useful, e.g.
for the recognition of red blood cells [11], [63], [80].

2.3 Spatial features
In many applications, regions cannot be found using only the spectral in-
formation; some spatial aspects must also be involved. This is illustrated
by Figure 2.6 which represents three functions having the same unimodal
histogram. Depending upon how the spectral values are distributed in the
spatial space, these functions can be regarded as composed of 1, 2 or 4
distinct regions. Spatial information must, therefore, be added to classifi-
cation techniques to take account of the pixel positions or of the gray level
variations among adjacent pixels.

One way to treat the spatial information is to consider a group of pixels
(e.g. 3x3) at a time. The pixel values are concatenated to form a unique
sample vector v̄c. Good results have been reported when the segmentation
process has been applied to these vectors [1], [87). However, the large num-
ber of dimensions in the vector v̄c can reduce the accuracy of the histogram
estimate and the reliability of the classification results. Therefore, a small
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number of parameters or features are often used to represent the cell and,
thus, reduce the number of dimensions. Cell mean, variance, entropy, slope,
and gradient are among the proposed spatial features. Techniques such as
principal components and K-L transform to name but two, are available to
select the features with the highest discrimination between classes or regions
[13], [28], [81], [96], [86].

Edges are another important and widely used spatial feature. Edge point
detection is closely related to segmentation, as edge points correspond to re-
gion boundaries. Edge detection searches for discontinuities in pixel values,
i.e. important changes between adjacent pixels, while segmentation groups
pixels with similar values into regions. Edge detection can be regarded as a
statistical decision problem involving the partition of points into two classes:
edge points or non-edge points. The decision is usually based upon a set
of parameters calculated from a set of connected pixels; for example, gradi-
ent value, slope, variance, etc.. These parameters are then thresholded to
yield edge points and non-edge points, Much work has been done on edge
detection [15], [44], [47], [65], [75], [35).

Some heuristic or ad hoc processes have been proposed to improve the
results obtained by the classification approach: pre-processing such as im-
age filtering, post-processing such as image cleaning, multi-thresholding or
variable thresholding [9], [13], [26], [32], [42], [57], [96], [105]. One particular
approach proposes the combination of pixel classification and edge detec-
tion. For example, the edge value can be used for selecting the threshold
for pixel classification, or the classification can be done in the spectral-edge
space [9], [53], [56], [54]. Region contours found from pixel classification and
edge detection can also be combined [50], [51].

2.4 Limitations
Three major limitations of the pixel classification approach are now out-
lined. The first one is related to the use of the histogram for estimating the
probability densities. The second concerns the selection of features. The
last limitation, which is not restricted to the pixel classification approach,
regards the use of thresholding processes.

The histogram is inadequate for handling all the spatial information.
It represents global information and involves a summation over the whole
image. This does not seem to be appropriate for spatial information, which
can be more local in nature. This lack of spatial information in the histogram
is illustrated by the example of Figure 2.6 where the different cases are
indistinguishable from the histogram. An additional difficulty is that a
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small region can have its histogram mode hidden by those of larger regions
[55], [83].

The second limitation concerns the selection of feature values to represent
the spatial information. Since the number of dimensions of the sample space
should be limited, we must therefore select the features which minimize the
loss of information. However, a feature may perform well only on a part of
an image. For example, the mean value, calculated from an image window,
is meaningful only if the pixels involved belong to the same region. Thus, an
ideal feature must adapt itself to the context. This requires decisions that
cannot be reliably made at this early stage of image analysis [46], [81], [18].

The last limitation regards the use of thresholds that must be supplied
by the user. Often, the effect of these thresholds are not well understood.
and therefore, their selection can be difficult. In many cases, the user must
carry out many experiments, in order to select the best values.



Chapter 3

Pixel Linking and Region
Growing

The preceding chapter has presented a pixel classification approach, where
the classes and the corresponding image regions are associated with modes in
the histogram h(v̄). There are severe limitations on the spatial information
that can be handled by this approach. A clustering approach based upon
a combined spectral/spatial distance measure can alleviate some of these
shortcomings.

The clustering approach attempts to identify groups or clumps of sample
points in the feature space [17], [91], [84]. A group or cluster is defined as
a dense set of points separated from other groups, and the identification
of clusters is based upon the distance between sample points. Thus, in a
cluster, a point is surrounded by other similar points located at a small
distance, while the distances between points of different groups are large.
An example is shown in Figure 3.1.

For image segmentation purposes, a region can be regarded as a cluster.
This implies that the distance between pixels inside a region must be small.

Figure 3.1: Data points forming two clusters.

14



Chapter 3. Pixel Linking and Region Growing 15

Figure 3.2: Data point linking for cluster detection. Note
that each cluster forms a tree.

The pixels must be both spectrally and spatially close to each other. In
other words, they must be adjacent and have similar gray level values.

A distance measure can be regarded as an evaluation of the similarity
or "natural association" between pixels or group of pixels. The spatial dis-
tance |(xi, yi) − (xj, yj)| can easily be combined with the spectral distance
|f̄(xi, yi) − f̄(xj, yj)| by treating these as two orthogonal vectors that have
to be summed.

Two different kinds of segmentation algorithms are now examined: 1)
pixel linking algorithms that are based upon a pixel-to-pixel measure, and
2) region growing algorithms which involve a pixel-to-region measure.

3.1 Pixel linking
Linking algorithms exploit the distance between sample points, d(i, j) =
|v̄i−v̄j|, in order to identify clusters [100], [37]. A sample point v̄i is attached
to one or more of its neighbours v̄j depending upon the distance d(i, j). A
group or cluster is thus formed of interrelated sample points, (see Figure
3.2).

A well known algorithm for data point linking is the minimum spanning
tree [17], [100], [37]. In a tree, there is a unique path that connects one
point to all others. A minimum spanning tree algorithm tries to join each
point with its closest neighbours while preserving the tree structure.

The identification of clusters here depends upon point proximity which
is a local information. Therefore, the results can be affected by local fluctu-
ations. For example, the elimination of a junction can divide a cluster into
two parts, while the addition of a new link can form a bridge joining two
clusters.
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Figure 3.3: Two directed trees with pixel as nodes. Note
that each tree defines an image region.

In image segmentation, the spatial distance between pixels, |(xi, yi) −
(xj, yj)|, must be combined with their spectral distance, |f̄(xi, yi)−f̄(xj, yj)|.
However, the spatial distance between pixels is fixed, and therefore, pixel
linking algorithms generally consider only the 4 or 8 neighbours of a pixel
as spatially adjacent.

A single linkage algorithm, presented by Narendra and Goldberg [58] is
now described. A single linkage means that each pixel has a directed link to
only one of its 8 neighbours. A directed tree with pixels as nodes, therefore,
defines a region. Hence in Figure 3.3, there are two pixel trees corresponding
to two regions.

A gradient image g(x, y) is first calculated (see Figure 3.4). In the gra-
dient image, the low value areas, where the pixel values remain constant
(valleys), correspond to region interiors, whereas, high gradient values occur
on region boundaries. Therefore, pixel trees are produced by linking pix-
els from highest values to lowest ones, the roots of the trees corresponding
usually to the region centers. The pixel trees are constructed by connecting
each pixel to the neighbour (8-neighbour) with the lowest gradient value.
This process is represented by the block diagram of Figure 3.5. In the pre-
processing step, the gradient image is calculated. Then, the decision process
determines the pixel linkage.

Small perturbations in the gradient image resulting from noise effects
can divide the image into many small pixel trees. Therefore, a smoothing
process is introduced to merge connected regions without high gradient value
boundaries.

A double-link approach called "relative similarity" is presented by Yokoya,
Kitahashi and Tanaka, [99]. A pixel can have many directed links toward
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Figure 3.4: a) One-dimensional example of a image. b) The
corresponding gradient image.

Figure 3.5: Block diagram of a pixel linking process. In
the preprocessing step, the gradient image, g(x, y), is first
calculated. The decision process then determines the pixel
linkage.

any of its 8 neighbours, if they are evaluated as similar. Similarity is a binary
relation obtained by thresholding the gray level difference between adjacent
pixels. The threshold varies from one pixel to the next so that similarity is
not necessarily reflexive, that is pixel i can be similar to pixel j, while pixel
j is not similar to i. The algorithm places two adjacent pixels i and j into
the same region only if they are joined by two-way (double) links; i.e. i is
similar to j and j is similar to i. Other modifications are also proposed and
good results are reported [3], [7], [ 23].

3.2 Region growing
Algorithms based upon point-to-cluster or pixel-to-region distances are now
examined. An important aspect to be considered is that region or cluster
descriptive parameters (e.g. the mean value) can be sequentially learned
from the data.

A well known and basic algorithm for spectral point clustering is the
K-means algorithm [91]. It defines a cluster Ck by its center ūk. The algo-
rithm starts with some initial ūk values. These values are iteratively updated
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to augment their representativity of the data. The iterative process is com-
posed of two phases: l) each data point v̄i is first joined to the closest cluster
Ck, determined from the distance to the cluster mean ūk, and 2) the data
mean values for each cluster are then recalculated using the latest class as-
signment. This latter process is repeated until there are no more changes in
the data partition and cluster mean values.

Region growing, a popular segmentation approach [30], [41], [45], is based
upon a pixel-to-region distance measure, and also involves the sequential
learning of the region descriptive parameters from image data. However,
region growing does not iterate as does the K-means algorithm. The decision
criteria used for pixel-region merging (phase 1) are now examined in more
detail. The sequential updating of descriptive parameters (phase 2) is then
studied.

Region growing algorithms involve a decision process which determines
if a pixel or, more generally, a cell belongs to a region [41], [45], [30]. This
decision can be based upon a cell-to-region distance measure where the cells
and regions are assumed to be Gaussian statistical populations described by
their means and variances. A likelihood ratio test can be used for deciding
if a cell and a region belong to the same population. One proposed simplifi-
cation consists in sequentially testing the similarity of variances and means
for each feature dimension [41], [30]. Spatial information is included in the
process by considering only adjacent cells as allowable candidates for fusion
with a region.

It is now examined how the region description parameters (means and
variançes) are calculated and updated. The algorithms begin by considering
that all regions are initially empty. The first cell becomes the starting point
of the first region. Then, the other cells are sequentially examined and
assigned to regions. For each cell, the similarities between the cell and one
of its adjacent regions is first tested. If the test succeeds, the cell is merged
with the region; otherwise, the next adjacent region is considered. If the cell
cannot be merged with any adjacent regions, then it becomes the starting
point of a new region.

This implies that a region starts from a single cell and expands hori-
zontally and vertically by absorbing more cells until it reaches its natural
boundaries where the similarity test fails. Horeover, each time that a cell
is added to a region, its descriptive parameters (means and variances) are
updated. This implies that the next statistical test involving this region will
take account of the new information, and hopefully, produce more reliable
results [30], [41], [45). This process is represented by the block diagram of
Figure 3.6, where a cell and a region are compared and merged if similar.
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Figure 3.6: Block diagram of a region growing process. The
decision process compares a cell and a region, and merges
them if similar. The region descriptions are stored and used
as an input to the decision. The descriptions are updated
after each merge.

The region descriptions are stored and used as an input to the decision. The
descriptions are updated after each merge.

Figure 3.7 illustrates the way that a region growing algorithm examines
and groups cells. The six cells are examined in the following order; A, B, C,
D, E, F, with cell A as the starting point of region 1. Cell B is tested for
similarity with region 1. The test is successful, the region is then extended
to include the ce1l B and the parameters of region 1 are updated. As cell C
is found to be different from region 1, it becomes the starting point of a new
region (#2). Ce11 D and E are subsequently added to region 1, the region
parameters being recalculated at each step.

One of the principal limitations of these algorithms is the order depen-
dancy [102]. The order in which the cells are processed affects the evolution
of the region parameters, and, therefore, the outcome of the similarity test.
Thus, different partitions can be obtained. For example, in Figure 3.7, the
assignment of ce11 F can differ whether it is first compared with region 1 or
region 2. Some modifications to the approach are suggested to reduce this
prob1em [81], [72], [10], [40], [89]. For examp1e, region growing can start
from ce11s 1ocated in the most uniform areas.
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Figure 3.7: Sequential cell merging in a region growing al-
gorithm.



Chapter 4

Hierarchical Segmentation

The preceding chapter has presented segmentation algorithms involving
pixel-to-pixel or pixel-to-region distances. Hierarchical segmentation algo-
rithms which involve region-to-region distances are now examined. Segment
hierarchy and predicate equations are first defined. Then, a number of seg-
mentation algorithms based upon predicate equations are studied, namely,
region splitting by histogram analysis, region merging, and pyramid based
segmentation. Two other algorithms producing a segment hierarchy without
the utilization of predicate equations are also discussed, multi-thresholding
and linked-pyramid algorithms.

4.1 Segment hierarchy and predicate
equations:

A segment hierarchy can be represented by a tree [67], [102] (see Figure
4.1). In a tree, segments at lower levels are joined to form segments at
higher levels. The nodes of the tree correspond to the segments Sℓ

i , and the
links between nodes indicate set inclusion. Thus, a link between a segment
Sℓ+1

k (ancestor or parent) and its disjoint sub-parts Sℓ
i (descendents or sons)

indicates that Sℓ
i ∈ Sℓ+1

k . The root of the tree corresponds to the whole
image I, and the leaves to pixels.

A image partition, P, therefore corresponds to a node set {S1, S2 . . . Sn},
called a node cutset, which is the minimal set of nodes separating the root
from all the leaves [34]. A node cutset divides the tree into many sub-trees:
one with I as root and with S1, S2 Sn as leaves, and many other sub-trees
(below P) starting with the descendents of Si ( ∈ P ).

In hierarchical segmentation, the desired image partition P = {S1 . . . Sn}

21
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Figure 4.1: Segment hierarchy and segment tree.

is usually defined by predicate equations [102]:

Prd1 : Q(Si) = true for all i

Prd2 : Q(Si ∪ Sj) = false for all i ̸= j

and Si adjacent to Sj

(4.1)

where Si represents a segment or a region. The logical predicate Q(.) is
used to express the requirements that all segments Si of a partition P must
satisfy.

The predicate equations Prd1 and Prd2 can therefore be regarded as
the definition of a node cutset. In practice, both merging and splitting
schemes can be used. A merging scheme starts with small segments Si (or
pixels) which satisfy Prd1, and proceeds to fulfill Prd2 by region merging.
It starts from the leaves of the tree, and climbs up the tree until it meets
nodes Sℓ+l

k (=Sℓ
i ∪ Sℓ

j) for which the predicate values are false, Q(Sℓ
i ∪ Sℓ

j)
= false. Thus, Sℓ

i and Sℓ
j are in the node cutset, when Prd2 is used as the

stopping criterion. Here, Q(Sℓ
i ∪ Sℓ

j) can be considered as an evaluation of
the similarity of Sℓ

i and Sℓ
j , thus segment merging stops when there are no

more similar segments. A splitting scheme starts with the root segment I
which satisfies Prd2, and proceeds to fulfill Prd1. It descends the segment
tree by dividing the segments Sℓ=1

k into sub-parts Sℓ
i and Sℓ

j , unti1 Prd1 is
fulfilled, Q(Sℓ

i ) = true and Q(Sℓ
j) = true. The b1ock diagram of Figure 4.2

represents these processes. The region descriptions are first obtained from
an initialization step. The regions are then split or merged by the decision
process. The region descriptions are updated after each decision.

Another approach to hierarchical segmentation is based upon step-wise
optimization. It is wide1y employed in data clustering where a stepwise
optimization process selects the clusters that must be merged or split [16],
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Figure 4.2: Block diagram of a predicate based hierarchical
segmentation process. The region descriptions are first ob-
tained from an initialization step. The regions are then split
or merged by the decision process. The region descriptions
are updated after each decision.

[17], [84], [85], [91]. For instance, in a merging scheme, the cluster pair,
(Ci, Cj), that optimizes a similarity measure, d(Ci, Cj) is found and the
corresponding clusters merged. This sequential merging can continue until
the required number of clusters is obtained. In Part II of this thesis, it
will be shown that this approach can be advantageously used for image
segmentation.

4.2 Region splitting by histogram analysis:
In Chapter 2, it was shown that the spectral histogram can be used for seg-
mentation. For example, in simple images, the histogram can be analyzed to
determine a threshold setting that separates an object from the background.
Algorithms using the same idea, but applied recursively, have been proposed
[52], [ 62], [ 83], [ 61], [92].

These algorithms typically start with one segment corresponding to the
whole image plane S0 = I. The splitting of a segment Sℓ

i is based upon
its set of 1-D histograms, each one corresponding to a feature fλ, (f̄ =
(f 1, f 2 . . . f ν)). A thresho1d is selected for one of the histograms, the thresh-
olding operation then divides the segment into many sub-regions Sℓ+1

k . By
repeating the same process, these sub-regions are then further segmented.
This approach yields a segment tree, and the segment splitting stops when
the segment histograms are unimodal, implying that the segments are ho-
mogeneous . This suggests that Prd1 can be written as follows :

Q(Si) = true ⇐⇒ histograms of Si are unimodal

Using the local segment based histograms as opposed to image-wide his-
tograms allows for a finer differentiation of image regions. However, many
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of the limitations of the histogram-based approaches remain; e.g. the fea-
ture selection problem, and the loss of spatial information. Horeover, the
calculation of many histograms can involve a large processing time. A num-
ber of modifications have been proposed to improve the algorithm: better
feature and threshold selection [62], [83], edge-contour correspondence [83],
and planning from a lower resolution image [62].

4.3 Region merging:
A segment tree can also be produced by merging two or more segments, thus
ascending the tree. In this approach, the algorithm employs a segment sim-
ilarity measure to define the predicate equation Prd2, which is the stopping
criterion for a merging scheme.

Q(Si ∪ Sj) = false ⇐⇒ Si is not similar to Sj

Moreover, an evident spatial constraint is that only adjacent segments can
be joined.

Region merging can be regarded as an extension of region growing (see
Chapter 3.2). In region growing, the cells and regions are distinguished. The
image is first divided into cells, and then the regions are formed by merging
of cells. A region begins with one cell and grows by annexing adjacent cells.
A merger can only occur between a region and a cell. In region merging,
there are only regions (or segments). The initial regions can be of any sizes
and shapes, and merges can occur between any adjacent regions. Therefore,
region growing and region merging possess sorne common characteristics:
both involve sequential learning of segment description parameters, and the
final result can be dependent upon the order of processing.

An example of a region merging algorithm is the one proposed by Brice
and Fennema [6]. They use two heuristics, based upon information from the
segment boundaries, to evaluate the similarity of two segments: the phago-
cyte and the weakness heuristics. Let L be the length of the common part
of two region boundaries (see Figure 4.3). Let W be the length of the weak
part of this common boundary, the weak part being those boundary points
where the pixel difference between both sides is less than sorne threshold
tw. Let Pmin be the length of the smaller perimeter, and let α and β be two
parameters. Then, the phagocyte heuristic merges two regions if W exceeds
a predefined portion, α, of Pmin, i.e. if W > α Pmin. While, the weakness
heuristic merges two regions if W > β L. The phagocyte heuristic guides
the merging of regions in such a way as to smooth or shorten the resulting
boundary. Two regions are merged if their common boundary is weak and
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Figure 4.3: Two regions and their common boundary. L is
the length of the common boundary and W is the length of
the weak part of this boundary.

if the segment boundary length does not increase too quickly. The weak-
ness heuristic merges two regions if a prescribed portion α of their common
boundary is weak; i.e. if the weak part is at !east a certain percentage of
L. The phagocyte heuristic is applied first, followed by the weakness one.
The requirement of many threshold values is a limitation of the algorithm.
Furthermore, the results can be affected by the order in which the regions
are examined and merged.

Freuder [23] presents an algorithm where the similarity of two segments
is a function of the surrounding segments. For each segment Si, the adjacent
segment, Sj, which is the most similar to Si is selected. A directed link is
drawn from Si to Sj. The similarity is related to the difference between
segment means values and the segment sizes:

| µi − µj | × ( A(Si) + A(Sj) )

where µi is the mean value of segment Si and A(Si) is the area or size of the
segment. Thus, each segment points to one of its neighbours, the one with
the closest mean value (weighted to take account of segment size). All seg-
ments related by a "double link" are now merged. A double link indicates a
local minimum of the segment similarity measure, Sj being minimum among
the neighbours of Si, and Si among the neighbours of Sj. Note that many
segments can be merged at each iteration. An advantage of this algorithm is
that no threshold is needed for the evaluation of segment similarity. More-
over, the utilization of local minimization avoids the problem of processing
order dependency of the results.
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4.4 Pyramid:
A pyramidal approach has been proposed for many image analysis tasks [78],
[88], [98], [71], [8], [34]. A pyramid is a stack of successively lower resolution
versions of the input image, with the original image f̄ 0(x, y) (=f̄(x, y)) at
the bottom. Blocks of m×m points (image elements) at level ℓ are combined
(e.g. averaged) to produce the single ancestor (parent) point at level ℓ + l.
In the following text, it is assumed that blocks are formed of 2 × 2 points.
Thus, if the level zero f̄ 0(x, y) contains n×n pixels, level l holds n/2ℓ ×n/2ℓ

points corresponding to blacks of 2ℓ × 2ℓ pixels.
The main characteristic of a pyramid is its multi-resolution represen-

tation of an image. The higher levels of the pyramid correspond to lower
resolution images. Pyramids have been found useful for many image anal-
ysis tasks because pattern element sizes can be very different and are not
generally known a priori. Pyramids allow a process to operate at many dif-
ferent resolution levels. Moreover, these computations can be performed in
parallel.

A pyramid can be regarded as a segment tree where each node corre-
sponds to a block of 2ℓ × 2ℓ pixels. However, it is a fixed tree, as a given
node in the tree always corresponàs to the same block of pixels.

Horowitz and Pavlidis [34] propose a split-and-merge approach using
the pyramidal data structure. The logical predicate Q(Sℓ

i ), which can be re-
garded as an evaluation of segment homogeneity, is defined from the segment
approximation error, Err(Sℓ

i ):

Q(Sℓ
i ) = true ⇐⇒ Err(Sℓ

i ) ≤ thr

where thr is a threshold value. The process begins at an intermediate level
ℓ of the tree, Sℓ = {Sℓ

i }. This level ℓ is regarded as the initial node cutset
CS, CS = Sell. This node cutset will be moved upward by segment merging
or downward by splitting, until the segments of the node cutset satisfy Prd1
(after splitting) and Prd2 (after merging).

Block mergers are performed first. The four descendants of Sℓ+1
i , des-

ignated by, Sℓ
i,1, Sℓ

i,2, Sℓ
i,3, and Sℓ

i,4, are merged only if they are all in the
current node cutset CS, they are all individually homogeneous, and finally,
Sℓ+1

i itself is homogeneous. This means that the node Sℓ+1
i is added to the

node cutset CS while Sℓ
i,1, Sℓ

i,2, Sℓ
i,3, and Sℓ

i,4 are removed. This process is
repeated until no more mergers are possible (i.e. until Prd2 is fulfilled).

Block splitting begins after all allowed mergers have been performed.
Only blocks that have not been formed by merging are considered . If a
block Sℓ

i is not homogeneous (Q(Sℓ
i ) = false) then it is divided into its four
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Figure 4.4: Image segmentation in a pyramid. The 8 pixels
of one image line are grouped into segments of varying sizes
to form a pyramid. The level 0 contains 8 segments, S0

i ,
of one pixel each. The level 1 contains 4 segments, S1

i , of
two pixels, etc.. The first three pixels have a value of one,
and the five others, that of zero. The partition of this line
is therefore composed of S1

1 , S0
3 , S0

4 and S2
2 .

descendants. This means that Sℓ−1
i,1 , Sℓ−1

i,2 , Sℓ−1
i,3 , and Sℓ−1

i,4 are added to the
node cutset CS, while Sℓ

i is removed. This is repeated until all blocks in the
node cutset are homogeneous (i.e. until Prd1 is fulfilled).

The block structure of the pyramid imposes arbitrary boundaries for
the regions. This implies that often the final partition contains too many
segments. For example, in Figure 4.4, the pyramid structure imposes an
arbitrary boundary between pixel 4 and 5 up to level 2. They can only
be joined if S2

1 and S2
2 are merged. The figure shows that the node cutset

contains 4 segments, and S1
1 , S0

3 , S0
4 and S2

2 while only two distinct regions
are present in the image.

To alleviate these anomalies, Horowitz and Pavlidis [34] propose a region
merging procedure to merge similar adjacent blocks contained in the node
cutset. In the example of Figure 4.4, it implies that S1

1 and S0
3 are merged

as well as S0
4 and S2

2 .
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4.5 Multi-thresholding
Algorithms of the preceding chapters which involve a thresholding operation,
can produce a segment hierarchy by varying the threshold values. However,
no predicate equations required here since a unique threshold value is suf-
ficient to define a partition or a node cutset. For example, a pixel linking
algorithm can be employed to produced a segment hierarchy. Consider, for
instance, that two pixels are linked only if their difference is lower than a
threshold value. Thus, a modification of the threshold value can delete or
add some links between pixels, resulting in the fusion or division of regions
[37], [54]. Suppose that the use of a first threshold value t1 yields segments
St1

i . Then, if a lower threshold t2 is employed, some links are removed,
which divide a region into two or more parts. The utilization of a sequence
of threshold values t1 > t2 > . . . > tn can, therefore, yield an hierarchy of
segments or a segment tree. A second example is an edge detection algo-
rithm that thresholds a gradient type value to identify potential edge points.
Reducing the threshold value can produce new edge points which divide a
region into two or more parts.

Multi-thresholding algorithms produce a distinct image partition for each
threshold value t. This partition is independent of any previously calculated
ones, and thus requires no sequential learning as in some segment merging
or splitting algorithms. Furthermore, no segment measure are involved.

4.6 Linked-pyramid
A linked-pyramid scheme, where the junctions between nodes of different
levels can be changed, has been presented to overcome the block structure
imposed by pyramids [8], [78]. It involves an overlapped pyramid defined
by 4x4 block where the blocks overlap by 50 percent in both the x and y
directions. This implies that each block Sℓ

i has four possible ancestors Sℓ+1
a

on the level above it, and has 16 possible descendants Sℓ−1
d on the lower

level.
In the linked-pyramid, the node cutset is predefined. Suppose that the

level k of the pyramid which contains m nodes is selected as the node cutset,
then the image can be divided into m regions corresponding to the descen-
dants of these m nodes. Therefore, no predicate equations are required. For
example, in Figure 4.5, there are two top nodes (the cutset) which involve a
partition of the image into two regions. A linked-pyramid algorithm modi-
fies the image partition by changing the links that relate the pixel nodes to
the cutset nodes.
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Figure 4.5: Pixel grouping in a linked-pyramid. Each of the
two top nodes defines a image region composed of the pixels
linked to this node. Note that the pixels of both regions are
interleaved.

The segmentation begins by the initialization of node values. It is per-
formed by a bottom-up process which calculates the value of a node u(Sℓ

i )
as the weighted average of its 4x4 possible descendants An iterative process
composed of 2 phases then follows. In the first phase, each node is linked
to the ancestor with the closest node value u(Sℓ+1

a ), i.e. which minimizes
the difference | u(Sℓ

i ) − u(Sℓ+1
a ) |. In the second phase, the node values are

recalculated in a bottom-up fashion. The value of a node is found by aver-
aging only over those descendants that are linked to it. These two phases
are repeated until no further change occurs, typically about 10 iterations.

A linked-pyramid relaxes the spatial constraints. The iterative modifica-
tions of node junctions results in pixels subsets that may be of any arbitrary
sizes and shapes. They can even possess pixels that are spatially uncon-
nected [8]. This results from the possible interleaving of descendants. For
example, in Figure 4.5, the two central pixels are surrounded by pixels of
the other group.

By reducing the spatial constraints, the linked-pyramid becomes more
similar to spectral clustering algorithms. The value of a node can be viewed
as the center (mean value) of a cluster composed of the node descendants.
Thus, the iterative recalculations of links and node values can be regarded
as a particular implementation of the K-means clustering algorithm (or the
ISODATA algorithm [39]).

However, the linked-pyramid approach is also affected by the same prob-
lems as the K-means algorithm: selection of the correct number of clusters,
and loss of small regions (clusters) when surrounded by larger ones. Many
modifications have been proposed for the initialization process, for the se-
lection of the ancestor, and for the calculation of node values [8], [33], [2],
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[71], [70]. The advantages of these different modifications seem to depend
upon the particular application considered. Two other limitations of this
approach are 1) the theoretical analysis of the algorithm results is difficult,
and 2) the results are not always reliable. In particular, examples have been
presented where the algorithm yields incorrect resu1ts [33], [2].



Chapter 5

Image Segmentation
Optimization

The algorithms described up to now employ local or regional decision pro-
cesses to segment a image. However, what may be really required is a
satisfactory global result. Such a result is often defined as the optimum
point of a cost function, G. In image segmentation, the possible results are
the set of all image partitions, U = {P}, where P = {S1, S2 . . .}, ⋃Si = I
and Si ∩ Sj = ∅ for i ̸= j, and the function (or the global criterion) G(P)
is a measure of the cost or benefit of the partition P. The optimal partition
Popt is, therefore, defined as:

G( Popt ) = Minimum
P∈U

G(P ) (5.1)

Note that the size of U increases rapidly with the number of pixels.
An optimization process can, therefore, be used to segment an image.

The function G is usually defined as follows:

G(P ) =
∑
Si∈P

H( Si ) (5.2)

where H(Si) is a segment characteristic measure. For example, the segment
homogeneity can be evaluated by the segment variance.

Image segmentation can also be viewed as the piece-wise approxima-
tion of a two-dimensional function f(x, y) by a set of polynomial functions,
r(x, y) = ∑

ai,j xiyj for i, j = 0, 1, 2 . . ., [34], [67]. Then, the segment cost
H(Si) is often defined as the sum of the squared approximation errors:

H(Sk) =
∑

(x.y)∈Sk

( f(x, y) − rk(x, y) )2 (5.3)

The spatial aspects of images, such as the roughness or smoothness, and the
entropy, can also be considered [59], [69], [97].

31
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Once a global criterion has been selected, segmentation becomes a well-
defined problem in discrete optimization, and in theory, can always be solved
by an exhaustive search. However, in practice, the large number of possi-
ble image partitions precludes an exhaustive search for all but the simplest
problems. In its place, two alternative approaches are employed: the utiliza-
tion of one-dimensional optimization techniques, and the finding of a local
optimum from an initial partition by iterative processes.

5.1 Image segmentation by 1-D
optimization

Two image segmentation algorithms based upon one-dimensional optimiza-
tion techniques are now presented: line by line segmentation and contour
detection. Pavlidis [67] presents an algorithm which slices the image into
thin strips, each consisting of one image line. A one-dimensional optimiza-
tion algorithm is then used to divide each strip into m segments. Each
segment, Si, is approximated by a linear function r(x) = ai +bi x for x ∈ Si.
The strip partition is performed so as to minimize the overall approximation
error.

These strip segments are then grouped by a segment merging algorithm
to form image regions. The algorithm imposes a bound on the approxima-
tion error for each image region. Each segment is sequentially examined
and merged with its most similar neighbour. The similarity between two
segments, Si and Sj, is measured by the difference between the slope co-
efficients, |bi − bj|, and the merger is performed only if the approximation
error of the resulting segment is smaller than a prescribed threshold. The
algorithm proceeds until no more mergers are possible.

Image segmentation can also be viewed as a problem of segment contour
detection. The definition of a good contour usually involves local criteria.
For example, the difference of gray levels between both sides of the contour
must be large and the contour must be smooth. Using a contour tracking ap-
proach, contour detection can be presented as a sequential decision process.
An edge element is defined as the common boundary between two adjacent
pixels, and therefore, it can be followed by only three other edge elements.
Thus, a contour tracking implies that a starting edge element must be given
and the subsequent elements must be sequentially selected.

Martelli [49] proposes the utilization of a tree search algorithm, based
upon the branch-and-bound algorithm, to find the best contour. Each
branch leaving a tree node corresponds to the selection of one of the three
possible following edge elements. Only the most promising branches are
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explored. Cooper [14] uses a likelihood measure to define the goodness of a
contour and tries to find the optimum one.

Good results have been reported for problems involving a few contours,
such as object-background differentiation problem [49], [20]. It seem par-
ticularly useful for very noisy image and where the general contour shape
is known. Its extension to more complex image, with many contours inter-
secting one another, seems difficult [49].

5.2 2-D local optimization
An interesting alternative, when the global optimum cannot be found, is the
location of a local optimum. Hence, an iterative process can be employed
to improve an initial image segmentation by seeking a local optimum. How-
ever, as the cost function (or the global criterion) G can possess a multitude
of local optimum points, the result depends upon the initial partition [59].
In this section, iterative algorithms based upon "steepest descent" and re-
laxation approaches are examined.

A "steepest descent" like algorithm starts with an initial image partition
P 0 and generates a sequence of partitions P 1 . . . P k such that G(P 0) >
G(P 1) > . . . > G(P k). Each partition P k is located in the neighbourhood
of the preceding one, P k−l. Peleg [69] presents an algorithm where each pixel
receives a label indicating the region membership. The algorithm examines
sequentially each pixel, and finds the best label for this pixel; i.e. the label
that produces the lowest criterion G. The process is repeated until no more
changes occurs. Peleg [69] uses a local criterion to speed up the process,
while Narayanan, O’Leary and Rosenfeld [59] employ the derivative of the
global criterion to find the direction and the amplitude of the pixel value
change ("steepest descent" ).

Good results are reported for cases where only a few segment classes are
considered, for example, for object-background separation problems [69].
The criterion G is obtained by a combination of the segment approximation
error with a roughness measure (i.e. measure of gray level change between
adjacent pixels) and with a measure of the goodness of fit between image
edge values and segment contours.

Relaxation and stochastic labeling algorithms can also be regarded as
local optimization processes [21], [22], [36]. Stochastic labeling means that
a probability vector pi(λ) is associated with each object i, corresponding to
the probability that the object i receives the label λ. In image segmentation,
each pixel can be regarded as an object and the labels can correspond to
classes.
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Such stochastic labeling can be characterized by its ambiguity and its
consistency. An object labeling is non-ambiguous if pi(λ) equals one for
one label and is zero for all others. An ambiguity measure indicates if the
probability pi(λ) is concentrated in one label, or if it is distributed over the
set of labels. An example of such a measure is

Ai =
∑

λ

pi(λ) ( 1 − pi(λ) ) (5.4)

The consistency is a measure of the compatibility of an object labeling pi

with those of its neighbours pj. It involves the utilization of object inter-
relations. Let qi(λ) be a measure of the support from the neighbours of i to
the label λ:

qi(λ) =
∑

j∈N(i)

∑
λ′

r(i, λ, j, λ′) pj(λ′) (5.5)

where r(i, λ, j, λ′) expresses the support from object j with label λ′ to the
assignation of the label λ to object i, and where N(i) designates the neigh-
bours of i. qi can be normalized such that its components sum to one:

q∗
i (λ) = qi(λ)

/∑
λ′

qi(λ′) (5.6)

A consistency measure can then be defined as:

Ci = ∥ p̄i − q̄i ∥ (5.7)

where ∥ · ∥ can be any norm (e.g. the Euclidean distance). These measures,
Ai and Ci, can be combined to yield a local criterion, with a global criterion
resulting from averaging over the set of objects.

An iterative process can then be used to find a local optimum labeling.
However, there are many ways to define the global criterion and the iterative
optimization process [76], [36], [22], and it can be difficult to select the
appropriate definitions. Eklundh, Yamamoto and Rosenfeld [19] present an
example of a relaxation algorithm used to improve pixel classification. At
each iteration k, they calculate qk

i (λ), as defined before, from the current
pk−1

i (λ), the indices i corresponding to pixel number. Then the new value
for pk

i (λ) are calculated by

pk
i (λ) = pk−1

i (λ) (1 + qk
i (λ))∑

λ pk−1
i (λ) (1 + qk

i (λ))
(5.8)

Here the probability pi(λ) is updated by multiplication with (1+qi(λ)). The
result, pi, is then normalized so that its components sum to one.
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Hierarchical Image
Segmentation by Stepwise
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Chapter 6

A Hierarchical Image
Segmentation Algorithm

In the preceding chapters, image segmentation algorithms have been re-
viewed. It has been shown that:

1) Pixel classification techniques regard regions as composed of pixels be-
longing to the same statistical population or class. Good results are
obtained if the pixel properties (e.g. probability distribution of pixel val-
ues) are uniform over a region, and are easily distinguishable from those
of others regions. Pixel classification and edge detection are found useful
for many applications, but they are limited by the way they treat the
spatial information, i.e. as local spatial features.

2) Pixel linking and region growing algorithms consider regions as formed
of similar pixels. Versatile algorithms are obtained by the utilization of
spatial-spectral distances to evaluate the similarity of pixels. Hence, the
distance between pixels inside a regio must be small. Distance measures
can easily take account of the spatial aspect, particularly of the neighbour
relation.

3) Hierarchical segmentation exploits the hierarchical structure of images.
It is based upon segment measures which can evaluate complex properties
of a image area such as the contour shape, the boundary weakness or the
spectral histogram. Segment measures consider a larger image area than
pixel distances, and therefore yield more reliable results.

4) A global criterion states the overall requirement that image regions must
satisfy. A segmentation process can thus consist in finding the partition
that optimizes the criterion. However, the appropriate definition of the
criterion and the derivation of an algorithm that finds the optimum image

36
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partition can be difficult tasks. The global criterion can also be useful to
compare and evaluate image partitions produced by different algorithms.

5) An important aspect, found in many segmentation algorithms such as
region growing and segment merging, is that segment descriptive pa-
rameters (e.g. the mean value) are sequentially learned from the data.
Hence, the latter iterations of a segmentation process benefit from more
accurate parameter values.

In this chapter, a new hierarchical segmentation algorithm based upon
step-wise optimization is presented. The approach is inspired from hier-
archical data clustering. For instance, in a merging scheme, a hierarchical
clustering starts with N clusters corresponding to each of the N data points,
and sequentially reduces the number of clusters by merging. At each iter-
ation, the similarity measures d(Ci, Cj), are calculated for all clusters pairs
(Ci, Cj), and the clusters that minimize the measure are merged. This merg-
ing is repeated sequentially until the required number of clusters is obtained.

An important limitation of the hierarchical clustering approach is its ex-
cessive computing time for large data sets. If there are N clusters, then
the similarity measure for N × (N − 1) possible clusters pairs must be cal-
culated. In image segmentation, however, only adjacent segments can be
merged, reducing the number of considered segment pairs per iteration to
N × M , where N is the number of segments, and M the average number of
neighbours per segment. M is usually small (4 ≤ M ≤ 8) and is quite inde-
pendent of N . Furthermore, a segment merge affects only the surrounding
segments, and only the pairs involving those segments need to be modified
or updated. Thus, only a limited number of new segment pairs must be
considered at each iteration. Note that this gain of computing efficiency is
only obtained for agglomerative and not divisive hierarchical segmentation.

The next section describes the proposed algorithm. It is then briefly
compared with other hierarchical segmentation algorithms based upon a
logical predicate.

6.1 The Hierarchical Stepwise Optimization
(HSO) algorithm

An algorithm employing a sequence of optimization processes to produce
a hierarchical segmentation is now presented, and called the Hierarchical
Stepwise Optimization algorithm (HSO). It starts with an initial image par-
tition, P 0 = {S1, S2, . . . Sn}, and at each iteration, merges two segments to
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yield a segment hierarchy. An optimization process is used to select the
segment pair that minimizes a "stepwise criterion" Ci,j.corresponding to the
cost of merging Si with Sj. The variables involved in the algorithm are:

1) Bi, the list of the segments Sj adjacent to Si,
2) Di, the parameters that describe the segment Si,

e.g. the segment mean and size, and
3) Ci,j = C(Di, Dj), the cost of merging segment Si with Sj,

wheres Sj is contained in Bi.
In the following presentation, the stepwise criterion and the stopping

condition are not defined, and these must be specified according to the
special characteristics of each application.

The algorithm consists of the following steps:

step 1 - Initialization step:
Define an initial image partition P 0 = {S1, S2, . . . Sn} and
for each segment Si calculate
i) the segment descriptive parameters, Di
ii) the neighbour list Bi = { Sj | Sj is adjacent to Si }

iii) the stepwise criteria {Ci,j | Sj ∈ Bi}
Ci,j = cost of merging Si with Sj

step 2 - Find the criterion Cm,n which has the lowest value.
Cm,n = Minimum

i,j
{ Ci,j }

Merge Sm and Sninto Sv and calculate
i) Dv from Dn and Dm

ii) Bv = Bm
⋃

Bn
⋂ {Sm, Sn}

step 3 - Update the neighbour lists Bj and criteria {Ci,j}
∀ Sj ∈ Bv (i.e. for all j such that Sj is a neighbour of Sv)
i) Bj = Bj

⋃ {Sv} ⋂ {Sm, Sn}
ii) delete Cj,m, Cm,j, Cj,n and Cn,j .
iii) calculate Cv,j and Cj,v

step 4 - Stopping condition:
Stop if no more mergers are required.
Otherwise, go to step 2.
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The algorithm is composed of an initialization part (step 1) and of
an iterative part (steps 2 through 4). An initial image partition, P 0 =
{S1, S2, . . . Sn}, is first defined with strictly homogeneous segments (step 1).
For example, each initial segment could contain only one pixel. Then, for
each pair of adjacent segments, Si and Sj, a stepwise criterion is calculated.
The criterion corresponds to the cost of merging the two segments. For
example, the increase of the sum of the squared errors around the segment
means could be used.

At each iteration, the segment pair, Sm and Sn, which minimizes the
step-wise criterion is first found and merged to produce Sv (step 2). The
criterion values and neighbour lists are then updated in step 3. The step 4
terminates the algorithm if no more mergers are required. Otherwise, a new
iteration is executed.

The algorithm is designed so as to reduce the computing time. Recal-
culations are avoided by 1) making explicit the information needed, and 2)
updating the only values that are modified by a segment merger. The re-
quired information for the calculation of Ci,j is contained in Bi and Di. The
neighbour lists Bi keep track of all segments adjacent to Si. Ci,j is calcu-
lated only for segment Si and Sj such that Sj ∈ Bi. The evaluation of Ci,j

is then performed in terms of the segment descriptive parameters Di and
Dj, Ci,j = C(Di, Dj). Therefore, from Bi and Di, the criterion values can
rapidly be calculated. Moreover, the number of evaluated criterion values
can be reduced by one half if the criterion is symmetric, Ci,j = Cj,i.

In the initialization step, Bi and Di are first calculated directly from
the image f̄(x, y) and the pixel membership function that indicate to which
segment a pixel belongs. In the subsequent steps, the Bv and Dv values for
a new segment Sv are obtained in a recursive manner as shown in step 2.

In a similar fashion, the merging of two segments affects only the neigh-
bours. Hence, the step 3 needs to update only the neighbour lists Bj of
segments adjacent to Sv and to evaluate only the related criteria Cv,j and
Cj,v. Thus, the number of operations is proportional to the number of neigh-
bours of Sv.

The small number of modified criteria between two iterations can also
be exploited to speed up the finding of the minimum criterion Cm,n (step
2).

To sum up, the computing time of the initialization step is a function
of the image size, the number of initial segments and the number of neigh-
bours per segment. The computing time of the iterative steps, on the other
hand, is mainly a function of the number of neighbours of Sv. The number
of iterations depends upon the number of initial and final segments, each
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iteration reducing by one the number of segments. However, the algorithm
requires substantial temporary memory space to store the current descrip-
tive parameters, neighbour lists and criterion values.

6.2 Stepwise optimization vs logical
predicates

This section compares the HSO algorithm with hierarchical segmentation
algorithms based upon logical predicates. A typical predicate based hierar-
chical merging algorithm (PBHM) can be defined as follows (see Chapter
4):

PBHM algorithm:

i) Define an initial partition, {Si}.
ii) Select randomly two adjacent segments and

merge them if Q(Si
⋃

Sj) = true.
iii) Stop if no more merges are possible,

i.e if Q(Si
⋃

Sj) = false for all segment pairs.
Otherwise, go to ii).

The hierarchical step-wise optimization algorithm (HSO) can be sum-
marized as follows, in order to compare it with the PBHM algorithm:

HSO algorithm:

i) Define an initial partition, {Si}.
ii) Select the two segments that minimize Ci,j and merge them.

If there are many equal minimum Ci,j values,
select one of them randomly.

iii) Stop if no more merges are required.
Note that a stopping condition must be defined.
Otherwise, go to ii).

The main difference between both algorithms is in the step ii) where
the HSO algorithm examines all segment pairs, (Si, Sj) in order to find
the minimum Ci,j, while the PBHM algorithm considers only two segments
at the same time. The stepwise optimization rule implies that the HSO
algorithm considers the whole image context before merging two segments.
This is indicated in the block diagram of Figure 6.1 by the multiple arrows
entering the decision box. The region descriptions are first calculated by
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Figure 6.1: Block diagram of a hierarchical stepwise opti-
mization process. The region descriptions are first calculated
by an initialization step, then they are updated after each
decision or segment merger. The decision examines all re-
gion pairs and selects one for the merger.

an initialization step, then they are updated after each decision or segment
merger.

The stepwise optimization rule also implies that the most similar seg-
ments are merged first. The HSO algorithm gradually merges the segments,
starting with the ones having the smallest Ci,j values. This gradual aspect
is not possible in the PBHM algorithm where only two states are consid-
ered: the true state for similar segments and the false state for segments
not similar. Both the global and the gradual aspect confirm the advantage
of the HSO algorithm over the PBHM algorith .

Moreover, a PBHM algorithm can be rewritten as a HSO algorithm, or
in other words, the PBHM algorithms form a sub-set of HSO algorithms.
The rewritting of a PBHM algorithm can be done in the following manner:

l) Define Ci,j as:

Ci,j =

0 if Q(Si
⋃

Sj) = true

1 if Q(Si
⋃

Sj) = false
(6.1)

2) Define the step iii) of the HSO algorithm as:

iii) Stop if there are no more Ci,j = 0.
Otherwise, go to ii).

The resulting HSO algorithm is equivalent to the PBHM algorithm be-
cause the algorithm randomly merges segment pairs having Q(Si

⋃
Sj) =

true, and stops when no such pairs remain.
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6.3 Content of the following chapters
The following chapters stress the properties and advantages of the step-wise
optimization algorithm. It is first shown that the algorithm combines the ad-
vantages of both the hierarchical and the optimization based segmentation.
It is also demonstrated that, in hierarchical segmentation, the step-wise op-
timization rule reduces the probability of error. The probability of step-wise
error is derived for a simple statistical image model. Finally, the selection of
an appropriate step-wise criterion for a particular application is considered,
and image segmentation examples are examined.

The contributions of each chapter are now described in more detail:
1) Optimization and segment hierarchy (Chap. 7)

Image segmentation can advantageously be stated as a global optimiza-
tion problem. Hence, a piece-wise polynomial approximation is often used
to represent a image, and the segmentation is then regarded as an optimiza-
tion process which finds the partition having the minimum approximation
error. The finding of the global optimum is generally unfeasible. The step-
wise optimzation (HSO) algorithm is, therefore, presented as a sub-optimal
alternative. The algorithm benefits from the utilization of a hierarchical
structure and of segment based measures. Moreover, the global criterion
is employed to derive the step-wise criterion, which corresponds to the in-
crease of the global criterion produced by the merging of two segments. The
operation of the algorithm is illustrated by an example.
2) Probability of error in hierarchical segmentation(Ch. 8)

Image segmentation can be regarded as an hypothesis testing process
which merges two segments only if they belong to the same region. Two
types of error can then occur: type I error when two similar segments are
kept disjoint, and type II error when dissimilar segments are merged. The
classical hypothesis testing approach can be employed and is reviewed. It is
stressed that, at each step of a hierarchical segmentation process, the type
II error is the most serious and, therefor it is advantageous to minimize its
probability. This is acheived by the proposed stepwise optimization (HSO)
algorithm which finds and merges the most similar segment pair. The proba-
bility of step-wise error (i. e. the probability of merging dissimilar segments)
is then calculated, and the effects of segment sizes and criterion value are
examined. Finally, the progression of the criterion minimum values from
step to step is analysed and used to determine when the algorithm begins
to merge very dissimilar segments.
3) Algorithm operation and criterion selection (Chap. 9)
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The operation of the segmentation algorithm on real images is examined,
and the problem of criterion selection is considered in more detail. The
relation between the global optimization and the statistical testing approach
is first outlined. A simple image segmentation example is then analysed. It
is shown that the image possesses a hierarchical structure which allows many
possible stopping points. User input is, therefore, needed to specify at which
level of the segment hierarchy the algorithm must be stopped. The problem
of selecting the appropriate segment models and the corresponding step-wise
criteria are then examined. It is illustrated by experiments with a number
of different criteria on a remote sensing image. The algorithm is shown to
be capable of adaptation to different segmentation tasks.



Chapter 7

Optimization and Segment
Hierarchy

A central problem in image analysis is that of segmentation; i.e. partitioning
an image into disjoint regions that are homogeneous in some sense. In this
chapter, image segmentation is presented as an optimization problem. A
piece-wise polynomial approximation is often used to represent a image.
The approximation error can then be employed as a global criterion G(P),
and an optimization process can be used to find the partition that minimizes
this criterion.

The piece-wise image approximation problem is presented and it is shown
that the HSO algorithm constitues an interesting sub-optimal approach to
the global optimization problem. This algorithm features both segment hier-
archy and stepwise optimization. The segment hierarchy assumption reduces
the search space, while the stepwise optimization assures that each iteration
optimizes the global criterion . A detailed description of the algorithm for
the constant piecewise approximation case is given, and its operation is il-
lustrated by a simple example. The case of planar approximation is also
examined.

7.1 Piecewise image approximation
An image can be regarded as a two dimensional function f(x, y), where
(x, y) ∈ I, I being the image plane. An image partition P divides the image
plane I into n regions, S1, S2, . . . Sn. Let fi(x, y) designate the pixel values
for the region Si, fi(x, y) = f(x, y) for (x, y) ∈ Si. Then, each region Si can
be approximated by a polynomial function, ri(x, y),

fi(x, y) ≃ ri(x, y) =
∑

(p,q)∈Γ
ai
p,q (x)p (y)q (7.1)
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where Γ is the set of (p, q) pairs employed to define the terms of the poly-
nomial function, ap,q. The approximation error for each segment can then
be calculated by the sum of the squared deviations:

H(Si) =
∑

(x.y)∈Si

( f(x, y) − ri(x, y) )2. (7.2)

Once the segment Si is given, the coefficients ai
p,q that minimize H(Si)

can be calculated. These must yield the best polynomial approximation for
Si. The minimization of H(Si) implies:

∂H
∂ap,q

= 0 | ∀ (p, q) ∈ Γ (7.3)

This can be rewritten as follows:∑
p′,q′

ap′,q′

( ∑
(x,y)

(x)p+p′
(y)q+q′)

=
∑
(x,y)

f(x, y) (x)p(y)q | ∀ (p, q) ∈ Γ (7.4)

This is a linear system with m equations and m unknowns, m being the
number of allowed pairs (p, q), (e.g. if Γ = (0, 0), (0, 1) and (1, 0) then
m=3). The polynomial coefficients ai

p,q that minimize H(Si) can be obtained
by solving this linear system. A unique solution may not result. This is
particularly the case when the number of pixels in Si is smaller than m, the
number of coefficients.

Having defined the segment approximation problem, the problem of im-
age approximation is now considered. Piecewise image approximation will
then be a tie-in with image segmentation. Once a image is divided into
segments S1, S2, . . . Sn, each of them can be approximated, and a image
approximation, r(x, y), results from the concatenation of each piecewise ap-
proximation ri(x, y):

r(x, y) =


r1(x, y), if (x, y) ∈ S1

... ...
rn(x, y), if (x, y) ∈ Sn

(7.5)

The approximation error for the whole image is, consequently:

G(P) =
∑
Si∈P

H(Si) (7.6)

where P = {S1, S2, . . .}, ⋃Si = I and Si ∩ Sj = ∅ for i ̸= j.The minimum
value for G results necessarily from the sum of the minimum values for
H(Si), H(Si) = Hmin(Si). The image approximation consists then in finding
the partition Pmin that minimizes the global criterion G.
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The importance of the number of segments n in the minimization of G(P)
must be stressed. The minimum value Gmin(P) will monotonically decrease
with the increase of the allowed number of segments for P. For example,
splitting a segment into two sub-parts can only reduce the approximation
error, no increase is possible. Therefore, a image approximation problem
consists in finding the partition P∗

n such that

G(P∗
n) = Minimum

{P ′
n}

{ G(P ′
n) } (7.7)

where P∗
n and P ′

n are image partitions with n segments.

7.2 Stepwise optimization for image
segmentation

The identification of the partition Pmin that minimizes a global criterion or
cost function G is now discussed. It requires a search over the entire space
of all possible image partitions, {P}. However, the implementation of this
search is prohibitive because of the large size of the {P} space. Therefore, the
search space U must be constrained to a subset of {P}, U ⊂ {P}. Hence, only
a sub-optimum is obtained, which can be very close to the global optimum
if the subset U is properly selected.

Two kinds of subsets U often used are 1) the neighbourhood of an initial
image partition, and 2) the subset yielded by a hierarchical data structure.
Thus, if it is known that the optimum is close to an initial image partition P0,
the search can surely be constrained to the neighbours of P0. Furthermore, a
gradient descent like procedure can be used (see section 5.2). This consists
in moving a pixel from one segment to another if such a move improves
the global criterion or cost function G. This iterative process is terminated
when a local optimum is found. However, in general, it is difficult to specify
a sufficiently good initial partition P0.

A hierarchical data structure can also be employed to define a useful
subset of image partitions (see Chapter 4). A hierarchy of segments can be
represented by a segment tree in which nodes correspond to segments. Each
segment Sℓ

i is linked to the segments of a lower level Sℓ−1
i,1 , Sℓ−1

i,2 , . . . which are
disjoint subsets of Sℓ

i , and which are called sons of Sℓ
i . Therefore, a image

partition corresponds to a subset of these tree nodes.
A image segmentation algorithm which involves the construction of a

segment tree as the result of a sequence of stepwise optimizations is now
introduced. The presentation is similar to the one proposed by Ward [93]
for hierarchical clustering. It requires a global criterion or cost function
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G(P) which reflects the cost or loss of information resulting by representing
the image with the partition P.

An initial image partition P0 = {S0
1 , S0

2 , . . . S0
n} with n segments is first

defined. At the kth iteration, the algorithm merges two segments from the
Pk−lpartition to produce a new partition Pk = {Sk

1 , Sk
2 . . . Sk

n−k}. As the
number of segments is decreased by one at each iteration, Pk must contain
n − k segments. G(Pk) tends generally to increase from step to step and
can be written as:

G(Pk) = G(P0) +
k∑

ℓ=1

(
G(Pℓ) − G(Pℓ−1)

)
(7.8)

The minimization of G(Pk) is, therefore, associated with the minimization
of each term of the summation which corresponds to the increase of G at
each iteration. Thus, the global optimization problem is reduced to a se-
quence of stepwise optimizations. However, the minimization of each term,
G(Pℓ) − G(Pℓ−l), yields the global optimum for G(Pk) only if the terms
are independant, which is not necessarily the case. Nevertheless, it can
constitute an interesting sub-optimal approach.

The goal of the stepwise optimization is, therefore, to find the two seg-
ments whose merger produces the smallest increase of G. For the image
approximation problem, G increases monotonically with the number of it-
erations, k.

G(P0) ≤ G(P1) . . . ≤ G(Pℓ) . . . ≤ G(Pk) (7.9)

such that the increase G(Pk) − G(Pk−1) is always nul or positive. This
increase results from the merging of two segments Si and Sj, and can easily
be calculated from equation 7.6:

Ci,j = H(Si ∪ Sj) − H(Si) − H(Sj) (7.10)

The only terms of G(P) that are affected by the merging are H(Si) and
H(Sj) which are replaced by H(Si ∪ Sj). Thus, Ci,j is the stepwise criterion
to be optimized. So, each iteration k involves:

1) the identification of all pairs of connected segments (Si, Sj),
2) the calculation of Ci,j,
3) the selection of the lowest Ci,j, and
4) the merging of the two corresponding segments.

It must be noted that the algorithm does not guarantee that Pk will
optimize G(P) amongst all the partitions with n−k segments. Nevertheless,
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it yields good results as will be seen, and the implied hierarchical data
structure can constitute an advantage for many applications.

The main characteristic of the algorithm is the stepwise optimization
process for the selection of the two segments to merge. This is different
from the predicate based segmentation (see Chapter 4) where the decision
to merge or split segments is local (based upon Si or Si ∪ Sj) and involves a
threshold-like decision process. The utilization of a predicate only guaran-
tees that the segment Si will satisfy the predicate, but not that the partition
will satisfy some overall criterion. Another important point is that the pro-
posed algorithm only merges two segments at each iteration.

7.3 Image approximation by constant value
regions

The previous section has presented a segmentation algorithm using a global
criterion, with stepwise optimization. The stepwise optimization algorithm
(HSO) described in section 6.1, can be adapted to the global optimization
case by an appropriate definition of the stepwise criterion. As a particular
example, the concepts are illustrated by the piecewise approximation of a
multi-channel image f̄(x, y) = ( f1(x, y), f2(x, y), . . . fκ(x, y) ) by constant
value regions.

In constant piecewise approximation (or zero order approximation), an
image is divided into segments Si which are approximated by their mean
values, µ̄i = ( µ1,i, µ2,i . . . µκ,i ):

ri(x, y) = µ̄i (7.11)

This corresponds to using only one term of the polynomial function, the ai
0,0

term, the optimal value being the segment mean, ai
0,0 = µ̄i (see section 7.1).

The segment approximation error or the segment cost is then the weighted
sum of the squared differences between the pixel values and the segment
mean µ̄i:

H(Si) =
κ∑

λ=1
wλ

( ∑
(x,y)∈Si

( fλ(x, y) − µλ,i )2
)

(7.12)

where κ is the number of channels and wλ is a weighting factor which takes
into account the different dynamic ranges. Simultaneously, the minimization
of G(P) (= ∑H(Si) ) can then be regarded as the minimization of the intra-
cluster (segment) variance or as the maximization of the between cluster
(segment) variance ([17] p. 222).
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In order to use the HSO algorithm (see section 6.1), the stepwise criterion
and the segment descriptive parameters Di must be defined. The step-wise
criterion is as given before:

Ci,j = H(Si ∪ Sj) − H(Si) − H(Sj) (7.13)

which can now be rewritten as:

Ci,j = Ni · Nj

Ni + Nj

κ∑
λ=1

wλ ( µλ,i − µλ,j )2 (7.14)

where Ni and Nj are the number of pixels in Si and Sj. The stepwise mini-
mization of Ci,j, therefore, results in the merger that minimizes the increase
in the overall pixel variance around the segment means. The segment de-
scriptive parameters, Di, needed to calculate the criterion are the segment
size, Ni, and the mean, µ̄i.

In order to complete the definition of the HSO algorithm, the stopping
condition (step 4) must also be specified. It is assumed that the algorithm
stops when the number of segments reaches a predefined value. The stopping
condition is discussed in more detail in Chapter 9.

7.4 An illustrative example
The operation of the algorithm is now illustated by means of a simple ex-
ample. Figure 7.1 shows a small image (4 × 4 pixels) with 7 initial constant
level segments. This is a one channel image (κ = 1). Therefore the indices,
λ, are omitted for simplicity, and the channel weighting factor is set to one
(w = 1).

The algorithm starts with an initial partition P0 of 7 segments, S1, S2 . . . S7.
The first iteration merges two segments and yields a new one labeled S8.
At the following iterations, segments S9, S10, . . . are sequentially created.
Figure 7.2 shows a segment tree which represents the sequence of segment
mergings.

Table 7.1 contains the corresponding segment description parameters,
i.e. the size Ni, the mean µi and the neighbour set Bi of each segment Si.
There is one line per segment. These values are computed and stored by
the algorithm. The upper part of Table 7.1 is calculated at the initialization
step (step 1), while the last lines are calculated one by one at each iteration
(steps 2 to 4).

Table 7.2 shows the lists of criterion values Ci,j which are used to find
which segments to merge. These lists must be updated after each merge.
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Figure 7.1: A small image with its initial partition.

Figure 7.2: Sequence of segment merges.
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Table 7.1: Segment description parameters and neighbour
lists.

The different columns of Table 7.2 show the content of these criterion lists,
with the minimum enclosed by a rectangle.

The operation of the algorithm is now detailed step-by-step. The ini-
tialization step is the only one which requires the image gray level matrix
(Figure 7.1-a) and the initial image partition (Figure 7.1-b). For each initial
segment Si, the number of pixels Ni, the mean µi and the segment neigh-
bours Bi are calculated. These values are shown in the upper lines of Table
7.1. In addition, the criterion values Ci,j for all pairs of initial segments Si

are evaluated and shown in the upper part of Table 7.2.
The iterative part of the algorithm requires the following operations:

step 2) Select the minimum value in the criterion list (the minimum is
enclosed by a rectangle), and create a new segment which is added
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Table 7.2: Lists of criterion values Ci,j .
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to Table 7.1.
step 3) Update the criterion values (this is shown by the addition of a new

column in Table 7.2), and update the neighbour lists.
step 4) Decide to continue or to stop.

As an example, these operations are described in more detail for the first
iteration:

step 2) Find the minimum value in column "iteration l" of Table 7.2, which
is 1.2 for the criterion C2,5.
Produce a new segment labeled S8 by merging S2 and S5. The
descriptive parameters and neighbour list of S8 are calculated from
those of S2 and S5 and are noted in a new line of Table 7.1.

step 3) Update the criterion values by removing any Ci,j involving S2 or S5,
and by calculating the new criteria involving S8 and its neighbours.
The updated criterion values are shown in the column "iteration 2"
of Table 7.2.
Update the neighbour lists by replacing any appearances of S2 or
S5 by S8 in the Bi lists.

step 4) Decide to continue.
This completes the first iteration.

This process is repeated until the number of segments has been reduced
to the preset value. In the present example, the image can be considered as
composed of two regions, and,therefor the algorithm is stopped at this time.
The final partition is thus composed of S10 and S12.

7.5 Planar approximation
In many cases, constant value approximations are inappropriate to repre-
sent the image regions, and more complex approximation functions must be
employed. For instance, the approximation of the one-dimensional example
of Figure 7.3 requires first order polynomial functions. Higher order poly-
nomials need more calculations but can be applied to a larger class of image
regions. For demonstration purposes, the planar approximation case is now
examined. Approximation with higher order polynomials can be developed
in a similar manner.

A segment Si is approximated by a plane:

ri(x, y) = ai
0,0 + ai

1,0(x) + ai
0,1(y) (7.15)



Chapter 7. Optimization and Segment Hierarchy 54

Figure 7.3: A one-dimensional example of planar approxi-
mation.

The sum of the squared errors is used as the segment cost H(Si). The
calculation of the coefficients ai

0,0, ai
1,0 and ai

0,1 that minimize H(Si) is now
developed. All the needed information about the segment values f(x, y), for
(x, y) ∈ Si, is contained in the following moments:

N = number of pixels in Si

Mz =
∑

Si
f(x, y)

Mzz =
∑

Si
f(x, y)2

Mzx =
∑

Si
x · f(x, y)

Mzy =
∑

Si
y · f(x, y)

Mx =
∑

Si
x

My =
∑

Si
y

Mxx =
∑

Si
x2

Mxy =
∑

Si
x · y

Myy =
∑

Si
y2

(7.16)

where all the summations are over (x, y) ∈ Si. From these moments, the
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following covariance values are calculated:

Vzz = Mzz − (Mz)2
/

N

Vzx = Mzx − Mz Mx

/
N

Vzy = Mzy − Mz My

/
N

Vxx = Mxx − (Mx)2
/

N + N
/

12

Vxy = Mxy − Mx My

/
N

Vyy = Myy − (My)2
/

N + N
/

12

(7.17)

The term N/12 in Vxx and Vyy results from the consideration of a pixel as
an elementary area of constant value (see Figure 7.3). Regarding a pixel as
an elementary area instead of a dimensionless point resolves the problems
of small region approximations.

The coefficients ai
0,0, ai

1,0 and ai
0,1 that minimize H(Si) can now be cal-

culated:

If Vxy = 0 then

a1,0 = Vzx

/
Vxx

a0,1 = Vzy

/
Vyy

If Vxy ̸= 0 then


a1,0 = Vzx Vyy − Vzy Vxy

Vxx Vyy − (Vxy)2

a0,1 = Vzy Vxx − Vzx Vxy

Vxx Vyy − (Vxy)2

and in both cases a0,0 = ( Mz − a1,0 Mx − a0,1 My )
/

N

(7.18)

The sum of the squared errors H(Si) of this optimal approximation is:

H(Si) = V i
zz − ai

1,0 V i
zx − ai

0,1 V i
zy (7.19)

As for the constant approximation case, the stepwise optimization algorithm
(HSO) can easily be adapted to the planar approximation case. The step-
wise criterion is as defined in equation (7.10)

Ci,j = H(Si ∪ Sj) − H(Si) − H(Sj) (7.20)

where the segment approximation error H(Si) is calculated from the preced-
ing equations. The segment descriptive parameters Di now include all the
predefined moments; i.e. N , Mz, Mzz, Mzx, Mzy, Mx, My, Mxx, Mxy and
Myy. Note that the moments of new segments can be obtained in a recursive
manner.
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Figure 7.4: Sequence of segment merges for planar approx-
imation.

As an illustration, the planar approximation algorithm is applied to the
one-dimensional example of Figure 7.3, where the pixel values are 22, 16,
10, 6, 9, 12, 8, 6 and 8. The algorithm begins with a partition of 9 segments
containing one pixel each, {S1, S2 . . . S9}. Figure 7.4 shows the sequence of
segment mergings. A three segment partition, {S15, S12, S13}, is produced by
stopping the algorithm after 6 iterations. In Figure 7.3, these three segments
are approximated by straight lines.

In Chapter 9, both constant value and planar approximation will be em-
ployed to segment remote sensing images. The advantages and limitations of
both will also be discussed in the more general context of criterion selection.



Chapter 8

Probability of Error in
Hierarchical Segmentation

Pattern recognition and image analysis are often regarded as statistical de-
cision processes. In this chapter, it is first shown that statistical testing can
be employed for image segmentation. An image is regarded as composed of
constant value regions corrupted by Gaussian white noise. An image seg-
mentation can then be produced by testing and merging two segments if
they belong to the same region. Two types of error can then occur: type I
error when two similar segments are kept disjoint, and type II error when
dissimilar segments are merged. The classical hypothesis testing approach
can be employed and is reviewed. It is stressed that, in hierarchical seg-
mentation, the type II errors are the most important and it is, therefore,
advantageous to minimize this probability of error. This is achieved by
a stepwise optimization process which finds and merges the most similar
segment pair.

The probability of error in the stepwise optimization approach is then
examined. A normalized statistic is used as a stepwise criterion and its
probability functions are derived. The probability of stepwise error (i.e. the
probability of merging dissimilar segments) is then calculated, and the effects
of segment sizes and criterion value are examined. Finally, the progression
of the criterion minimum values from step to step is analysed, and is used
to determine when the algorithm begins to merge really dissimilar segments
and, therefor must be stopped.

57
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8.1 A statistical model for image
segmentation

A simple image model that can be employed for image segmentation is first
defined. It is assumed that an ideal image ftrue(x, y) is composed of constant
value regions {Rk}, where mk designates the true value for region Rk,

ftrue(x, y) = mk, for ∀ (x, y) ∈ Rk (8.1)

The observed image values, f(x, y), result from the addition of Gaussian
white noise e(x,y) to the ideal image:

f(x, y) = ftrue(x, y) + e(x, y) (8.2)

where the variance of the noise is σ2.
The goal of a image segmentation process could be then to find the true

image partition {Rk}. Let Si designate any arbitrary subpart of a true region
Rk, Si ⊂ Rk. Thus, ftrue(x, y) = mk for (x, y) ∈ Si, and if we consider mi

as the true value for the pixels of Si, then we have mi = mk. Hence, image
segmentation will consist in merging together the segments Si that belong
to the same true region Rk.

The merging of segments can be based upon hypothesis testing. For ex-
ample, considering two arbitrary adjacent segments, Si and Sj, a statistical
test can be used to determine if they belong to the same true region Rk,
Si ⊂ Rk and Sj ⊂ Rk. However, as the characteristics of Rk are unknown,
the statistical decision must instead consider whether the true values mi and
mj of segments Si and Sj are the same.

8.2 Hypothesis testing
Classical hypothesis testing is now reviewed and applied to image segmenta-
tion. Each pixel value f(x, y) inside a segment Si, (x, y) ∈ Si, is regarded as
a random variable, which is Gaussian distributed with mean mi and variance
σ2, N (mi, σ2). A segmentation process must therefore decide whether two
segments, Si and Sj, have the same true mean value, mi = mj, or not.

A statistical decision process can be used to determine which one of the
following two hypotheses is true [48].

H0 : mi − mj = 0 ( or mi = mj )
HA : mi − mj ̸= 0

(8.3)
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In order to simplify the analysis, the multiple alternative hypothesis HA is
replaced by a single alternative one, H1, which is defined by the parameter
dtrue, dtrue > 0.

H1 : |mi − mj| = dtrue (8.4)

Therefore, it is assumed that the difference between the true segment means
are either equal to zero, or to dtrue. The difference d, between segment means
is a sufficient statistic for this test:

d = µi − µj

d = 1
Ni

∑
Si

f(x, y) − 1
Nj

∑
Sj

f(x, y) (8.5)

where µi, µj and Ni, Nj are, respectively, the mean values and sizes of
segment Si and Sj. Therefore, the statistical decision consists in accepting
H0 if d is small, more precisely, if −τ ≤ d ≤ τ , where τ is a selected
threshold.

The performance of a test is judged according to its tendency to lead to
wrong decisions. Two types of error can be considered:

Type I : rejecting H0 when H0 is true
Type II : accepting H0 when H1 is true

(8.6)

The probability of these two types of error can be calculated [48].

Probability of type I error (α)
If H0 is true, the statistic d has a Gaussian distribution

d ≈ N (0, σ2
d) with σ2

d = (1
/

Ni + 1
/

Nj) σ2 (8.7)

and where Ni and Nj are, respectively, the sizes of segments Si and Sj.
Therefore, the probability of type I error is:

α = 1 −
∫ τ

−τ

1√
2π σd

exp
(

−x2

2σ2
d

)
dx (8.8)

Probability of type II error (β)
If H1 is true, the statistic d is also Gaussian distributed but with mean

dtrue:

d ≈ N (dtrue, σ2
d) (8.9)
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Table 8.1: Probabilities of errors for different segment sizes
with dtrue = 3σ and τ = 1.5σ.

Segment sizes α β

1 pixel .289 .144
2 pixels .134 .067
4 pixels .034 .017

The probability of type II error is then:

β =
∫ τ

−τ

1√
2π σd

exp
(

−(x − dtrue)2

2σ2
d

)
dx (8.10)

These probabilities of errors are functions of τ , σ2
d and dtrue. They must

both be low for a good decision process. For a given σ2
d and dtrue, we can

modify τ such as to reduced α or β, but both cannot be reduced at the same
time. Therefore, some compromise must be reached, for example, select τ
such that α = β.

Small values for α and β simultaneously can be achieved only if dtrue

/
σd

is large. As σd decreases with the segment sizes, the probabilities of errors
are smaller for decisions involving larger segments. This is illustrated by
Table 8.1 which gives the α and β values for different segment sizes, with
dtrue = 3σ and τ = 1.5σ.

8.3 Sequential testing in hierarchical
segmentation

Hierarchical segmentation begins with many small segments which are se-
quentially merged to produce larger ones. Statistical decision can be em-
ployed to determine whether, or not, two adjacent segments must be merged.
However, the sequential aspect of hierarchical segmentation must be consid-
ered in the design of the decision process. Thus, the type II error results from
the merging of two different segments, and therefore, cannot be recovered
by an agglomerative process. Whereas, a type I error keeps separated two
similar segments which can be corrected in a following step. Therefore, it
seems preferable to keep β at a low level to avoid type II errors. To develop
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Figure 8.1: Sequence of segment testings in a hierarchy.

this point, the hierarchical segmentation is now regarded as a sequential
testing process and the associated probabilities of errors are derived.

A two stage test for merging is first examined. In stage 1 (see Figure
8.1), the segments S1

i and S1
j are compared by a first test, test #1. If

the segments are not merged after this test, they will, sooner or later, be
involved in a second test. Before this second comparison, S1

i and/or S1
j are

merged with some adjacent segments belonging to the same regions in order
to produce S2

i and S2
j , S1

i ⊂ S2
i ⊂ Ri and S1

j ⊂ S2
j ⊂ Rj. The second stage

test, test #2, considers, therefore, the segments S2
i and S2

j in which S1
i and

S1
j are still disjoint. The same hypotheses, H0 vs H1, are employed at both

stages. Let α1, β1 be the probabilities of errors for test #1, and α2, β2 for
test #2. The probabilities of errors for the combined test are designated
by α1+2 and β1+2. If H0 is accepted in test #l, then as the segments are
merged, test #2 is not needed.

If H0 is true, we have:

Prob( accept H0 at test #1 ) = 1 − α1

Prob( accept H0 at test #2 ) = α1 (1 − α∗
2)

(8.11)

where α∗
2 is the probability that test #2 rejects H0 when H0 has been re-

jected by test #l, α2 ≤ α∗
2 ≤ 1. Then, we obtain:

α1+2 = 1 − Prob( accept H0 at test #1 )
− Prob( accept H0 at test #2 )

α1+2 = α1 α∗
2

(8.12)

If H1 is true, we have

Prob( accept H0 at test #1 ) = β1

Prob( accept H0 at test #2 ) = (1 − β1) β∗
2

(8.13)
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where β∗
2 is the probability that test #2 accepts H0 when H0 has been

rejected by test #1, 0 ≤ β∗
2 ≤ β2. Thus, we obtain:

β1+2 = Prob( accept H0 at test #1 )
+ Prob( accept H0 at test #2 )

β1+2 = β1 + (1 − β1) β∗
2 ≃ β1 + β∗

2

(8.14)

where the term β1β
∗
2 is usually small and thus can be ignored.

It can be noted that if the two tests are identical (i.e. if they always give
the same results), then α∗

2 = 1 and β∗
2 = 0. If the tests are independant (i.e.

if the results of tests #1 do not affect the results of test #2) than α∗
2 = α2

and β∗
2 = β2.

If a third step is then added to the process, we obtain:

α1+2+3 = (α1+2) α∗
3 = α1 α∗

2 α∗
3

β1+2+3 ≃ (β1+2) + β∗
3 ≃ β1 + β∗

2 + β∗
3

(8.15)

and, more generally, for a m step process, we have:

α1+···+m = α1 α∗
2 · · · α∗

m

β1+···+m ≃ β1 + · · · + β∗
m

(8.16)

The probability of type I error is, therefore, reduced from one stage to
the next. Hence, a high value can be assigned to α1, as the following tests
will reduce the overall α. It is even shown that:

α1 ···+m ≤ Minimum ( α1, α2, . . . , αm ) (8.17)

On the other hand, the probability of type II error increases from stage to
stage. A large β at the first stage cannot be subsequently reduced.

β1 ···+m ≥ Maximum ( β1, β2, . . . , βm ) (8.18)

An upper bound for β1 ···+m is given by

β1 ···+m ≤ β1 + β2 + · · · + βm (8.19)

As an example, Table 8.2 shows the probabilities of errors for a three
stage process using the same threshold value, τ = 1 1

2σ. The segment sizes
are respectively of 1, 2 and 4 pixels for stage 1, 2 and 3. As noted before, the
probabilities of errors decrease with the segment sizes. The progression of
the lower and upper bound of β1+2+3 is also reported. The bound for β1+2+3
will usually be determined by test #1 where the value of β1 (= 0.144) is high,
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Table 8.2: Probabilities of error for sequential testing with
the same threshold (dtrue = 3 σ).

Test Threshold αk βk
β1 ···+k bounds

lower upper

# 1 1.5 σ .289 .144 .144 .144
# 2 1.5 σ .134 .067 .144 .211
# 3 1.5 σ .034 .017 .144 .228

Table 8.3: Probabilities of error for sequential testing with
different thresholds (dtrue = 3 σ).

Test Threshold αk βk
β1 ···+k bounds

lower upper

# 1 1
4 σ .859 .015 .015 .015

# 2 3
4 σ .453 .012 .015 .027

# 3 1 1
2 σ .034 .017 .017 .044

0.144 ≤ β1+2+3 ≤ 0.228. The upper bound for α1+2+3, which is the minimum
of αk values, will instead be determined by test #3, α1+2+3 ≤ α3 = 0.034.

By reducing the threshold values of test #l and test #2, the β1+2+3
bounds can be reduced without changing the upper bound of α1+2+3. In
Table 8.3, the threshold values are chosen such that βk values are small and
rather equal for the three stages. This results in smaller bounds for β1+2+3,
0.017 ≤ β1+2+3 ≤ 0.044. On the other hand, the corresponding increases
in α1 and α2 have not changed the upper bound of α1+2+3, which is still
determined by test #3. α1+2+3 ≤ α3 = 0.034.

In hierarchical segmentation, it is, therefore, advantageous to increase
the α values in the first stages and then subsequently reduce the α, in order
to keep β at an appropriately low level for each stage. This concept is
exploited in the next section.
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8.4 Stepwise optimization
In hierarchical segmentation, it is preferable for each stage to keep βk, the
probability of type II error, as low as possible. Unfortunately, βk cannot
usually be evaluated because dtrue is unknown. Also, the probability of type
I error, αk must be employed instead to select the appropriate threshold
value τ . Thus, the evaluation of the maximum value allowed for αk at
stage k is now examined, the maximization of αk being associated with the
minimization of βk.

At each stage or segment level, there are many possible segment mergers,
which can be represented by segment pairs (Si, Sj). The mean difference
statistics, di,j = µi − µj, can be calculated for each pair. Under the H0
hypothesis, this statistic can be associated with a confidence level, vi,j, which
is just the probability of obtaining a value d such that, |d| ≤ |di,j| :

vi,j = Prob( |d| ≤ |di,j|
∣∣∣ H0 )

vi,j =
∫ |di,j |

−|di,j |

1√
2π σd

exp
(

−x2

2σd

)
dx

vi,j = 2 ERF
(
di,j

/
σd

) (8.20)

where

σ2
d = (1

/
Ni + 1

/
Nj) σ2

ERF (y) =
∫ y

0

1√
2π

exp
(

−1
2

x2
)

dx

Using vi,j instead of di,j, a statistical decision process accepts the hy-
pothesis H0 and merges segments only if:

vi,j ≥ 1 − α or α ≤ 1 − vi,j (8.21)

Defining vmin as the minimum over vi,j, vmin = Min(vi,j), then the utiliza-
tion of an α greater than 1 − vmin implies that no segments are merged,
which renders the stage redundant. Therefore, the maximum allowed value
for α is αmax = 1−vmin, which results at least in one merger. Hence, a hier-
archical segmentation algorithm can employ a stepwise process which finds
the segment pair with the minimum confidence level vi,j and merges the
corresponding segments. This is equivalent to using the maximum allowed
α value for each stage.

Stepwise optimization, by maximizing αk, assures that, at each step, the
probability of type II error βk is kept to it lowest value. This should also
keep β1+···+m at a low value.



Chapter 8. Probability of Error in Hierarchical Segmentation 65

8.5 A stepwise criterion and its probability
functions

It has been shown that the stepwise minimization of vi,j reduces the prob-
abi1ity of error. In the following four sections, the probability of error
produced by this stepwise optimization process is calculated and analysed.
A statistic used as a stepwise criterion is first introduced and the probability
functions are defined. The statistic employed results from the normalization
of di,j:

d∗
i,j = |di,j|

σd

=
√

Ni Nj

Ni + Nj

|µi − µj|
σ

(8.22)

where σ2 is the variance of noise. The segment pair, Si and Sj, that mini-
mizes d∗

i,j will also minimize vi,j because:

vi,j = 2 ERF
(
d∗

i,j

)
(8.23)

Therefore, d∗
i,j can be used as the stepwise criterion.

The probability functions of d∗
i,j can easily be evaluated. Hence, under

the H0 hypothesis it follows that (see Figure 8.2):

PH0(d∗
i,j) = Prob( d∗ ≤ d∗

i,j

∣∣∣ H0 )

= 2 ERF
(

d∗
i,j

) (8.24)

In using d∗
i,j (or vi,j) in a statistical decision, the alternative hypothesis

H1 must be rewritten as:

H1 :
√

Ni Nj

Ni + Nj

|mi − mj|
σ

= d∗
true (8.25)

The probabi1ity function of d∗
i,j under H1 is ( see Figure 8.2):

PH1(d∗
i,j) = Prob( d∗ ≤ d∗

i,j

∣∣∣ H1 )

=
∫ d∗

i,j

−d∗
i,j

1√
2π

exp
(

−1
2

(x − d∗
true)

2
)

dx

=



ERF
(
d∗

true + d∗
i,j

)
−ERF

(
d∗

true − d∗
i,j

) if d∗
i,j ≤ d∗

true

ERF
(
d∗

i,j + d∗
true

)
+ERF

(
d∗

i,j − d∗
true

) if d∗
i,j ≥ d∗

true

(8.26)
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Figure 8.2: Probability functions of d∗
i,j under H0 (PH0)

and H1 (PH1) hypotheses.

Thus, the probability of type II error under H1 is now a function of d∗
true

and is equal to:
β = PH1(τ ∗) (8.27)

where τ ∗ is the decision threshold, (H0 is accepted if d∗
i,j ≤ τ ∗).

It must be noted that, under H0, the probability of d∗
i,j is no longer a

function of the segment sizes Ni and Nj. Under H1, the probability of d∗
i,j

and also of type II error is only a function of d∗
true, which integrates the

effect of the difference between the true segment means, mi − mj, and the
effect of segment sizes.

The probability function for the minimum value of a set of d∗
i,j is now

derived. Consider a set of K independant random variables, xi, with iden-
tical probability functions P(x), and let xmin be the minimum of this set.
For K = 2, it can be shown that the probability function of xmin is [66]:

Pmin(xmin) = 2 P(xmin) − P(xmin)2 (8.28)

and more generally, for K ≥ 2, (see Appendix A)

Pmin,K(xmin) =
K∑

j=1
(−1)j+1 K!

j! (K − j)!
P(xmin)j (8.29)
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However, if the minimum is calculated from a set of d∗
i,j values with dis-

tribution given by PH0 or PH1, then the probability function P(x) in the
preceding formula must be replaced by either PH0 or PH1.

8.6 Stepwise error probability
The stepwise optimization approach considers, at each step, all possible
segment mergers, represented by segment pairs (Si, Sj). The statistic d∗

i,j is
calculated for each pair, the minimum among these values is found, and the
corresponding segments are merged. A type II error occurs if the minimum
statistic d∗

min comes from segments belonging to the H1 hypothesis. This
would mean that two dissimilar segments are merged.

The probability of error at each step is now evaluated. Although some
assumptions are made in order to simplify the derivation, the deduction
from this simpler model can be extended to more realistic ones. Hence, we
assume that the random variables, d∗

i,j, are independant, and are divided
into two sets, DH0 and DH1. DH0 contains the values produced by segments
belonging to H0, while DH1 corresponds to those of the H1 hypothesis.

An error occurs if the minimum over DH1 is smaller than the minimum
over DH0:

Minimum
DH1

{
d∗

i,j

}
< Minimum

DH0

{
d∗

i,j

}
(8.30)

Let Pmin,K0(d∗
min | H0) designate the probability function for the minimum

value over DH0, and Pmin,K1(d∗
min | H1) for the minimum over DH1, where K0

and K1 are the numbers of elements in DH0 and DH1. Thus, the probability
of error is:

Prob( error ) =
∫ ∞

0
Pmin,K1( x | H1) pH0(x) dx (8.31)

where pH0 is the probability density:

pH0(z) = d

dx
Pmin,K0( x | H0)

∣∣∣∣
x=z

The probability of error can be regarded as the average of the probability
that the minimum over DH1 is lower than x, weighted by the probability
(density) that the minimum over DH0 equals x, pH0(x).

The evaluation of Pmin,K0 and Pmin,K1 can be done by using equation
(8.29) where P is replaced by PH0 or PH1. The probability of error can then
be calculated by numerical integration. Figure 8.3 presents the results for
some parameter values. The probability of error is a function of d∗

true, K0 and
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K1. However, it can be observed that the probability is mainly affected by
d∗

true and the ratio K0/K1. The importance of the ratio K0/K1 is illustrated
by the fact that, for d∗

true = 0, the probability is equal to K1/(K0 + K1)
or (1 + K0/K1)−1. Thus, the probability of error is reduced if d∗

true or the
K0/K1 ratio is increased.

8.7 Error and segment sizes
Hierarchical segmentation begins with many small segments which are se-
quentially merged to produce larger ones. However, the probability of error
is a function of the segment sizes. Hence, the parameter d∗

true decreases with
the segment sizes, thus small segments tend to possess small d∗

true values
which make it difficult to decide if d∗

true come from H0 or H1.
In stepwise optimization, the probability of error is not only a function

of d∗
true, but also of K0 and K1. While small segments tend to involve

small d∗
true values, they are also associated with large K0/K1 ratios. The

large value of K0/K1 compensates for the small value of d∗
true and keeps the

probability of error at a low level.
An example is employed to show the relation between K0/K1 and the

segment sizes. Figure 8.4 shows a image containing two regions which are
divided into segments. In the example A, the segments contain only one pixel
each, while in B they are composed of four pixels. The number of possible
segment merges corresponds to the number of 4-adjacent segment pairs. In
example A, there are 82 different segment pairs, and for each of them, we
can calculate the statistics d∗

i,j. Among these pairs, 76 involve segments that
belong to the same region, K0 = 76, while 6 contain segments from both
regions, K1 = 6. Thus, the ratio K0/K1 is equal to 122

3 . For the example B,
there are 17 different segment pairs, and K0 = 14, K1 = 3 and K0/K1 = 42

3 .
These examples show that the ratio K0/K1 is higher for the image with the
smaller segments. Generally, a large K0/K1 ratio can be expected if there
are much more segments inside regions than on the boundaries.

The probabilities of error for these two examples are now calculated. Let
m1 and m2 be the true values for region 1 and 2, and let σ be the noise level.
For example A, the value of d∗

true is

d∗
true,A =

√
1 · 1
1 + 1

|m1 − m2|
σ

= 1√
2 σ

|m1 − m2|

while, for example B,

d∗
true,B =

√
4 · 4
4 + 4

|m1 − m2|
σ

= 2√
2 σ

|m1 − m2|
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Figure 8.3: Stepwise probability of error in function of d∗
true

for different values of K0 and K1.
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Figure 8.4: Division of a two region image into segments a)
segments of one pixel, b) segments of four pixels.

The probability of stepwise optimization error is the probability that the
minimum of the K1 statistics values is lower than the corresponding mini-
mum from the K0 values. These statistics are assumed to be independent
and the probabilities of error are calculated with equation (8.31). The re-
sults for different values of |m1 − m2| are reported in Table 8.4.

It can be noted that the probabilities of error are higher for example
A than for B, when |mi − mj| is greater than σ, the standard deviation of
noise. This suggests that, in hierarchical segmentation, the probabilities of
error are higher in the first steps which involves small segments. The rapid
reduction of the probability of error with the increase of |mi −mj| must also
be noted. These probability values can be advantageously compared with
those of classical hypothesis testing. For example, consider the probabilities
of type II error for a test based upon the difference of segment means,
|µi − µj|, where the H0 hypothesis is accepted if the difference is lower than
a threshold, τ , equated to |mi −mj|/2. The probability values are shown in
Table 8.5, and are all larger than those of Table 8.4.

8.8 Error probability vs minimum criterion
value

The interrelation between steps has not been considered in the evaluation
of the stepwise error probability in the preceding sections. The minimum
criterion value for each step k, d∗

min, forms a sequence which tends to increase
as segment merging eliminates small values. The error probability is thus
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Table 8.4: Probability of step-wise error.

Probability of error
|mi − mj| example A example B

1 σ .0578 .07100
2 σ .0280 .00383
3 σ .0081 .00003
4 σ .0014 .00000

Table 8.5: Probability of type II error for a threshold of
|mi − mj |/2.

Probability of error
|mi − mj| example A example B

1 σ .2174 .2228
2 σ .2228 .0786
3 σ .1437 .0169
4 σ .0786 .0023

re-examined in order to take into account the observed minimum criterion
value for the step.

Let Pmin,K0(d∗
min | H0) designate the probability function for the mini-

mum value over DH0 and Pmin,K1(d∗
min | H1) over DH1. Thus, if the observed

minimum value is d∗
min, the conditional probability of error is:

Prob( error | d∗
min) = A

A + B
(8.32)

where
A = ( 1 − Pmin,K0(d∗

min | H0) ) pH1(d∗
min)

B = ( 1 − Pmin,K1(d∗
min | H1) ) pH0(d∗

min)

and where pH0 andpH1 are the probability densities:

pH0(z) = d

dx
Pmin,K0( x | H0)

∣∣∣∣
x=z

pH1(z) = d

dx
Pmin,K1( x | H1)

∣∣∣∣
x=z
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Figure 8.5: Stepwise probability of error for K0 = 16 and
K1 = 4.

The probability values, as shown in Figure 8.5, increase with the observed
d∗

min. This increase is less important when d∗
true is small, meaning that H0

and H1 are difficult to distinguish. Thus, it is useful to consider the observed
d∗

min in addition to the other parameters, d∗
true, K0 and K1, in the evaluation

of the stepwise probability of error, a low d∗
min value being associated with

a small probability of error.

8.9 Minimum criterion value sequence
In the following two sections, the problem of discriminating between the
signal and the noise components of a image is examined. In hierarchical
segmentation, this corresponds to defining when the segment merging must
be stopped. The probability of stepwise error cannot unfortunately be em-
ployed in real applications because the evaluation is based upon the d∗

true,
K0 and K1 parameters which are generally unknown. Instead, the sequence
of minimum values for the criterion at each step k, d∗

min,k, is used to char-
acterize the image structure and to distinguish between signal and noise
components. The case of a white noise image with uniform background is
first examined. The results of this analysis are used in the next section to
show how the signal components of a image are distinguished from the noise.
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Figure 8.6: Sequence of minimum criterion values for a
white noise image.

The stepwise optimization algorithm is applied upon a Gaussian white
noise image with a zero mean and a standard deviation of 50, (64×64 pixels).
All segment pairs found in the image belong therefore to the H0 hypothesis.
The image is initially divided into 4096 (= 64×64) segments of one pixel, and
4095 merging steps are performed, the number of segments being reduced by
one at each iteration. The resultant sequence of minimum criterion values,
d∗

min,k, is shown in Figure 8.6. k is the iteration or step number. This figure
is composed of 4095 dots that mostly concentrate around the compact line.
The first steps of the algorithm yield d∗

min,k values close to zero (right-most
points of the curve), then increasing in the following steps as bigger segments
are merged (moving leftward).

The relation between the d∗
min,k curve and the probability function of the

criterion is now examined. Consider first the simpler problem where a set
of n criterion values, D = {d∗

i,j}, are ordered, and where d∗
min,k corresponds

to the kth lowest value of the set D. Then, it can be shown ([48] Chap. 11)
that

PH0( E{d∗
min,k} ) = k

/
n + 1 (8.33)

where PH0 is the probability function of the criteria d∗
i,j, E{·} indicates the

mathematical expectation or the mean value, and n is the number of ele-
ments in the criterion set. This implies that the mean value of d∗

min,k is a
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Figure 8.7: The inverse function of PH0(d∗
min).

function of the rank k in the ordered list. The probability function PH0 is
drawn in Figure 8.7. Using the equation (8.33), the probability axis of the
curve can be associated with the criterion rank, k. This result, obtained by
ordering the set D, can also be produced by a stepwise optimization process
where, at each iteration, the minimum d∗

min,k is removed from the set D.
Thus, at step k, the minimum, d∗

min,k, is extracted from a set where the
preceding minimums, d∗

min,k−1, · · · d∗
min,1, have been removed, d∗

min,k corre-
sponding, therefor to the kth lowest value of the initial set D.

In the hierarchical segmentation algorithm, at each step, there are a
number of criterion values that are removed from the set D and new ones
are added. Accounting for this in the derivation of the equation for the d∗

min,k

curve is a difficult, if not impossible, task. Two aspects which distinguish
the Figure 8.6 from the Figure 8.7 should be mentioned. On one hand,
the addition of new criterion values implies that the minimum of the next
step, d∗

min,k+1, can be lower than the current minimum. Hence, in Figure
8.6, there are many points located below the more compact curve. The
occurrence of these lower points is rather random and unpredictable, while
the more compact curve can be analysed and used to characterize the image
structure.

On the other hand, the number of criterion values is reduced on average
by more than one at each iteration. In equation (8.33), n corresponds si-
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multaneously to the number of steps and to the initial number of elements
in the set D. In the hierarchical segmentation, the number of steps is equal
to the initial number of segments minus one, ninit − 1, while the initial
number of elements in the set D is approximately equal to 2 × ninit. Using
equation (8.33), the Figure 8.6 and the Figure 8.7 can be compared only if
n is equated to the number of steps, and in this case, the curve of Figure
8.6 increases slower than expected for the first steps, while the values be-
come rapidly higher in the last steps. We have found empirically a more
appropriate equation for the Figure 8.6:

PH0( E{d∗
min,k} ) = k

/
( 2 ninit − k ) (8.34)

where ninit is the inital number of segments.
This discussion gives some indication on the progression of the d∗

min,k

values under the H0 hypothesis. In particular, the role of the probability
function PH0 is shown.

8.10 Signal vs noise
The progression of the d∗

min,k values is now employed to discriminate between
noise and signal components. The presence of segment pairs belonging to
both hypotheses, H0 and H1, means that the probability function used in
equations (8.33) and (8.34) must now combine both PH0 and PH1. The
utilization of the composite probability function is associated with d∗

min,k

curves having higher values than those obtained from the pure noise case.
Some examples are now employed to show the effect of the signal com-

ponents on d∗
min,k values. They are produced from a checkerboard where the

two tones are designated by m1 (=0) and m2 (=100), and on which Gaus-
sian noise with different variances is added; namely, σ = 25, 50 and 75 (see
Figure 8.8). Except for the final steps, these examples produce d∗

min,k values
that follow a progression similar to the pure noise case, shown in Figure
8.7. This similarity reflects the fact that, until the final steps, the algorithm
merges segments belonging predominately to the same region. In the last
steps, however, the algorithm is forced to merge dissimilar segments. Figure
8.9 shows the d∗

min,k values for the last few steps. The points where the
curve shapes deviate from the pure noise pattern can easily be identified,
and are indicated by arrows. Figure 8.10 presents the image segmentations
produced when the segment merging is stopped at these points. In Figure
8.9-b, where the noise variance (σ = 25) is small compared to the signal
(|m1 −m2| = 100), there is an important jump of the d∗

min,k values when the
merging of dissimilar segments begins. Whereas, it is difficult to identify
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the true regions when the noise variance is large (see Figure 8.8-c where
σ = 75). This produces a d∗

min,k curve (Figure 8.9-d) more similar to the
pure noise curve (Figure 8.9-a). There is no jump in the d∗

min,k values, but
instead, only a change of the curve slope.
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Figure 8.8: Checkerboard images with noise.
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Figure 8.9: Minimum criterion value curves.
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Figure 8.9: Continued
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Figure 8.10: Segmentations of the checkerboard images.



Chapter 9

Algorithm Operation and
Criterion Selection

A hierarchical segmentation algorithm based upon stepwise optimization has
been described and analysed in the preceding chapters. This chapter exam-
ines the operation of the segmentation algorithm on real images, and consid-
ers the problems of stopping points and criterion selection. The relationship
between the global optimization and the statistical testing approaches is
first outlined, and illustrated by using a simple image segmentation exam-
ple. The selection of appropriate stopping points in the segment hierarchy
is examined in detail. It is shown that the image under study possesses a
complex structure with a number of possible stopping points. Good results
are reported for the segmentation of a Landsat satellite (MSS) Image.

The HSO algorithm presented is shown to be a valuable tool, but it does
not answer the basic question: what kind of segments must be detected or
what image model must be employed for a given segmentation task? Selec-
tion of different segment models corresponds to the utilization of different
stepwise criteria in the algorithm. This problem is discussed and illustrated
by the utilization of a number of different criteria on a remote sensing im-
age. Good results are also reported for the segmentation of a SAR image,
showing the adaptability of the algorithm to a different class of images. The
combination of different criteria is shown to be particularly advantegeous.
The problem of comparing different image partitions is also examined.

9.1 Analysis of the Image segmentation
results

The HSO algorithm presented in section 6.1 is now applied to a remote sens-
ing image and the results are analysed in detail. The selection of appropriate

81
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stopping points in the hierarchical segmentation is examined in particular.
It is first shown that the image approximation and the statistical testing
approach can be simultaneously used to analyse the algorithm results.

9.1.1 Global optimization and statistical testing
In Chapter 7, image segmentation is regarded as a image approximation
problem which involves the optimization of a global criterion: the approxi-
mation error. The stepwise criterion of the segmentation algorithm is then
derived from the global criterion and defined as the increase of the approxi-
mation error. For the case of image approximation by constant value regions,
the stepwise criterion is

Ci,j = Ni · Nj

Ni + Nj

( µi − µj )2 (9.1)

where Ni is the size of segment Si and µi is the corresponding mean value.
In Chapter 8, on the other hand, a statistical testing approach is em-

ployed for segment merging. An image is regarded as composed of constant
value regions corrupted by Gaussian white noise with known variance σ2.
The stepwise optimization is associated with the minimization of the prob-
ability of error, and the derived stepwise criterion is:

d∗
i,j =

√
Ni Nj

Ni + Nj

|µi − µj|
σ

(9.2)

It can be noted that d∗
i,j =

√
Ci,j/σ, and therefore the minimization

of either of these criteria will produce the same results. Therefore, both
approches can be simultaneously used to analyse the results of the HSO
segmentation algorithm.

It can be noted that the best estimate of an image partition, which is
defined as the maximum of a likelihood function, corresponds to the partition
that minimizes the approximation error (see Appendix B).

9.1.2 Analysis of a simple example
Figure 9.1 shows a 32×32 Landsat satellite image of an agricultural area
near Melfort in Saskatchewan. This is the 0.8-1.1 µm band of a Multi-
Spectral Scanner image taken by the Landsat-I satellite in August 1972,
frame E-1031-17265. The image is initially divided into 1024 regions of one
pixel each, and is segmented by the HSO algorithm using Ci,j, the increase
of the constant approximation error, as stepwise criterion.



Chapter 9. Algorithm Operation and Criterion Selection 83

Figure 9.1: A Landsat satellite image (32×32 pixels, 0.8-1.1
µm band).

Using a image approximation approach, an image partition can be char-
acterized by the number of segments and the approximation error. After n
steps, the image partition contains 1024 − n segments, and the sum of the
approximation errors is

SSE =
n∑

k=1
Cmin,k (9.3)

where Cmin,k is the minimum criterion at step k. The standard deviation
of the approximation error (=

√
SSE/1024 ) is shown in Figure 9.2. The

approximation error increases as the number of segments is reduced by merg-
ing. Each step tries to minimize this increase, yielding small increases for
the first steps. Hence, the approximation error is null for the first 326 steps,
where adjacent equal value pixels are merged. However, the increases be-
come more important at the latter steps where large different segments are
merged. In Figure 9.2, the change in the slope is gradual. Going from right
to left, the magnitude of the curve slope grows slowly up to the point marked
where the increase becomes more pronounced. The segmentation algorithm
must, therefore, be stopped before or around this point in order to obtain
an acceptable approximation error for the image partition.

A statistical approach can also be employed to analyse these results.
It has been shown that the stepwise minimization of d∗

i,j or Ci,j reduces
the probability of error (see section 8.4) , and that higher d∗

min,k values
correspond to higher probabilities of merging dissimilar segments (see section
8.8). The examination of the minimum criterion values, d∗

min,k or Cmin,k, can
then indicate when dissimilar segments begin to be merged. For instance, in
the checkerboard examples of section 8.10, the merging of distinct regions is
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Figure 9.2: Approximation error of image segmentations.

associated with a jump in the d∗
min,k values or a change in the slope of the

curve.
In Figure 9.3, the Cmin,k values for the remote sensing image are drawn

as a function of the number of segments contained in the image partition
at step k. The presence of negative impulses in the curve complicates the
analysis, and as noted in section 8.9, the occurrence of these lower points is
rather random and not really meaningful. Instead, an upper bound curve,
UB(Cmin,k), defined as the maximum Cmin,k over the preceding steps, is
introduced:

UB(Cmin,k) = Max
i=1...k

{ Cmin,i } (9.4)

This upper bound curve, presented in Figure 9.4, is more smooth and facil-
itates the analysis.

The Cmin curve of Figure 9.4-a can be divided into two distinct regions:
a region with low Cmin values and the other with rapidly increasing Cmin

values. The point "a" can be selected to delimit these two regions Cmin =
(43.4)2. Stopping the merging at this point produces a partition with 18
segments. All previous mergers have yielded Cmin values lower than (43.4)2,
and small increases from step to step. Whereas, for the mergers following the
point "a" the Cmin values increase rapidly, suggesting that really dissimilar
segments are then merged. The Figure 9.5-a shows the corresponding image
partition. The partition divides the image into what seems to be its most
basic parts.
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Figure 9.3: Minimum step-wise criterion curve for different
axis scales.



Chapter 9. Algorithm Operation and Criterion Selection 86

Figure 9.4: Upper bound curve of the minimum stepwise
criterion for different axis scales.
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Figure 9.5: Segmentations of the Landsat image (32×32
pixels).
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The remote sensing image possesses a rather complex structure with re-
gions having varying sizes and mean value differences. The basic regions
of Figure 9.5-a can moreover be considered as composed of finer elements.
These finer image components are obtained by reducing the number of seg-
ment mergers. The selection of corresponding stopping points can be done
randomly, but more appropriate points can be obtained by examining the
Cmin curve. For example, the point "b" of Figure 9.4-a can be employed.
This point corresponds to a change in the slope of the curve. Figure 9.5-b
shows the image partition with 36 segments that is produced by this stop-
ping point. This partition corresponds to dividing the regions of Figure 9.5-a
into finer elements. For example, segment 1 of Figure 9.5-a is divided into
segments 2 and 3 of Figure 9.5-b. There is a small gray level difference be-
tween region 2 and 3, thus, the region 2 represents a finer image component
than region 1.

Changing the scale of the axis in Figure 9.4-b, other special points can be
selected, such as the points "c" and "d" which again correspond to changes
in the slope of the Cmin curve. Stopping the segment merging at those
points produce partitions with 118 and 212 segments. In these partitions,
many small details of the image are preserved. For example, there are a
number of segments of one or two pixels. However, 212 segments seems an
excessive number to represent this small image (32×32 pixels). Note that,
in the first steps, there are many consecutive Cmin,k having the same value
which produce special points like "e" and "f". This results from the original
gray level quantization as, in the initial steps, the Cmin,k values correspond
to differences of only one gray level. In the next section, the meaning and
importance of the different slope change points are examined.

9.1.3 Hierarchical image structure
The presence of a hierarchical structure in the image can explain the ap-
pearance of many slope change points in the Cmin curve, each level of the
hierarchy being associated with a particular slope value. A hierarchical
structure means that the image contains components at different resolution
levels. The hierarchical segmentation algorithm takes account of this image
component hierarchy. Hence, in the remote sensing image, the partition
with 18 segments can be regarded as the highest level where only the most
important components of the image are preserved. This is illustrated by Fig-
ure 9.6-a where each image segment has been replaced by its mean value.
These segments encode the gross information of the image. They indicate
the most prominent areas. The other partitions of Figure 9.5 correspond to
splitting these segments into sub-units. The corresponding approximation
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Figure 9.6: Approximation of the Landsat image (32×32
pixels).

images are shown in Figure 9.6 and indicate that finer image components
are retained. These image partitions can be regarded as different levels of
the hierarchy which correspond to different image component resolutions.

The problem of finding a well defined stopping point in the segment
hierarchy is now examined. This is related to the existence of distinct layers
in the segment hierarchy. The layers can be produced by large gaps between
segment levels. The segment merging can then be stopped between two
layers. This is illustrated by Figure 9.7 where the hierarchy "a" contains no
distinct layers, while two layers can be recognized in "b". The layers can
be distinguished only if they possess different characteristics. For instance,
in the checkerboard examples of section 8.10, the position of a node on
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Figure 9.7: Hierarchy with no distinct layers (a ) and with
two layers ( b).

the vertical axis can correspond to its d∗
min,k (or Cmin,k) value. The first

mergers, which are associated with the elimination of noise, produce small
d∗

min,k values. While, the last mergers involve the fusions of the checker areas
which give large d∗

min,k values. This results in a large gap between these two
segment levels. In real applications, however, it is not clear that distinct
segment layers exist and can be distinguished.

Considering the minimum criterion curve, a layer corresponds to an inter-
val of the curve, and can be characterized by the slope value. Thus different
layers can be distinguished only if they possess different slope values. In the
remote sensing example, many curve intervals with different slope values
have been identified, and the boundary points of these intervals have been
used to stop the algorithm. However, some slope changes (points "a" and
"b") are more important and clear than others, reflecting more distinct layer
transitions. For the first steps of the algorithm, when there is still a large
number of segments in the image partition, the slope changes tend to be
smaller and more difficult to recognize, the progession of the Cmin,k values
being more regular and smooth.

One important consequence of this hierarchical structure for the step-
wise optimization algorithm is that the user must specify at which level to
stop the segment merging. The segment level can be defined by the ap-
proximation error, by the Cmin value, or by the number of segments in the
partition, each of these parameters being interrelated. The examination of
the approximation error and Cmin curves can then complement the context
knowledge in order to select a stopping point.
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Figure 9.8: A Landsat image (64×64 pixels).

9.1.4 Segmentation of a remote sensing image
The HSO algorithm is now applied to a more complex image: a 64×64 pixels,
two channel image. This is a MSS Landsat satellite image of an agricultural
area near Melfort in Saskatchewan, imaged in August 1972 (frame E-1031-
17265). The two channels of the image are presented in Figure 9.8, and
correspond to the 0.6-0.7 µm band and the 0.8-1.1 µm band. The image
is initially partitioned into 4096 segments where each segment corresponds
to only one pixel. The stepwise criterion, Ci,j, corresponds as before to the
increase of the constant approximation error,

Ci,j = Ni · Nj

Ni + Nj

∑
λ=1,2

wλ ( µλ,i − µλ,j )2 (9.5)

where µλ,i is the mean value for channel λ of segment Si, Ni is the size of
Si, and wλ is a weighting factor used to combine the different channels (see
section 7.4). Here, w1 and w2 are equated to one.

Figure 9.9 shows the criterion upper bound curve. As in the preceding
example, a number of slope change points are selected. The changes in the
slope are more gradual here than in the preceding 32×32 image. The image
partitions associated with each of these points are shown in Figure 9.10.
The user must choose between these different stopping points. The image
approximation error is presented in Figure 9.11.
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Figure 9.9: Upper bound curve of the minimum stepwise
criterion.
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Figure 9.10: Segmentations of the Landsat image (64×64
pixels).
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Figure 9.10: Continued
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9.1.5 Computing time
The segmentation algorithm is coded in a Fortran program and executed on
a VAX-11/750 computer. The preceding segmentation of the 64×64 pixel,
2 channel image takes 15.7 sec. of CPU time for the initialization step and
approximately 0.012 sec. per segment merging iteration (see section 6.1).
For the partition of the image into 97 segments, there are 3999 iterations
requiring 50.6 sec. of CPU time, giving a total computing time of 66.3
sec. Each iteration reduces the number of segments by one. The number of
iterations is thus equal to the difference between the initial and final number
of segments. It can, therefore, be advantegeous to use a simple segmentation
process to perform a first reduction of the number of segments in order to
reduce the total computing time.

Parallel computation can also be employed to reduce the CPU time [90],
[79]. For example, each iteration can perform, in parallel, m merges instead
of only one, these m mergers corresponding to the m lowest criterion values.
The image could be divided into m distinct blocks in another possible ap-
proach, and the first merging iterations could be performed independently
on each block by different processors, while the latter iterations use the
entire image.

Figure 9.11: Approximation error of image segmentations.
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9.2 Criterion selection
In the preceding section, it has been assumed that the constant value region
is a good model for the representation of an image. However, it is not clear
that it is the best one. The selection of an appropriate model for a image
segmentation task is a major issue. In the present stepwise optimization
approach, this is related to the selection of the appropriate stepwise crite-
rion. In this section, new models are proposed for the Landsat image. The
stepwise criteria are then derived and the results analysed.

The Landsat image employed is presented in Figure 9.12, with an en-
largement of the two sub-areas used in the following discussion. The image
contains 64×64 pixels, while the sizes of areas A and B are, respectively,
24×24 and 22×22 pixels. The results of the constant approximation cri-
terion are shown in Figure 9.13 for comparison purposes. The image is
divided into 100 segments, and each segment is replaced by its mean value
to produce an approximation image.

9.2.1 Planar approximation
The criterion used in the preceding sections considers the regions as con-
stant value areas. While this model seems generally appropriate for remote
sensing images, there are some cases where it is clearly deficient. For ex-
ample, Figure 9.14 shows a 1-D example where a constant value region is
appropriate for regions 1 and 3, while it is inappropriate for region 2. The
planar approximation model of section 7.5 can be employed:

ri(x, y) = ai
0,0 + ai

1,0(x) + ai
0,1(y) (9.6)

with the corresponding stepwise criterion given by equation (7.20). This cri-
terion is used to segment the Landsat image of Figure 9.12, and the results
are shown in Figure 9.15. It will be shown that the planar approximation,
unfortunately, does not produce a better image partition than the constant
value region model (Figure 9.13). The characteristics of the planar approx-
imation is now discussed in order to explain its deficiency for the Landsat
image.

The utilization of a higher degree polynomial means that more spurious
results can arise as illustrated in Figure 9.16. A signal composed of two
constant value regions (a) is corrupted by noise (b). In this case, the true
regions are correctly detected by a constant approximation (c) while a first
order approximation is misleading (d). A higher degree polynomial, having
more degrees of freedom, can match more closely the noise deformation,
yielding spurious results. A similar situation is observed by comparing the
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Figure 9.12: Landsat image and two sub-areas.

regions 1, 2 and 3 of Figure 9.13-e, and the regions 5, 6 and 7 of Figure
9.15-e. The region 2 in constant approximation is divided between regions
5 and 6 of planar approximation. The inclined plane of region 6 represents
both the light values of region 2 and the darker values of region 3. The pixels
of region 7 do not fit this plane and therefore form a distinct region. The
constant approximation results are, therefore, more appropriate for these
regions.

The difference between planar approximation and constant approxima-
tion is highlighted by the treatment of stair-like regions. If such regions
occur between two large regions, as in Figure 9.17-a, the stair-like region
can be regarded as a transition area, and it is advantageous to represent it
by an oblique line. Region 8 of Figure 9.15-e is an example where a planar
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Figure 9.13: Segmentation results for constant approxima-
tion.
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Figure 9.14: An example with constant value and inclined
line regions.

approximation is needed. On the other hand, if each stair corresponds to
a large constant region, as in Figure 9.17-b, it would be preferable to keep
each region distinct. A first order approximation tends to merge these re-
gions; the criterion value for two adjacent regions is three times smaller for
the first order than for the zero order approximation. The region 4 of Figure
9.15-c constitutes an example of merging such adjacent large regions.

9.2.2 Local variance
The HSO algorithms based upon constant or planar approximation try to
minimize the approximation error. The evaluation of the error for a given
pixel does not consider the importance of the gray level variance in the
surrounding area. Hence, in Figure 9.18, both examples, a and b, have
the same criterion value with respect to the regions 1 and 2. It can be
advantageous to make the criterion value depend upon the segment variance,
and define a new criterion such as:

C◦
i,j = Ci,j

/
( 1 + σi,j ) (9.7)

where σ2
i,j is the mean value of the squared approximation error:

σ2
i,j = H(Si) + H(Sj)

Ni + Nj

Here, H(Si) is as defined in section 7.1, the sum of the squared approxi-
mation error for segment Si, and Ni is its size. For constant approximation,
σ2

i,j corresponds to the combined variance of both segments. Thus C◦
i,j is

equal to Ci,j when σi,j is zero, and decreases for large values of the vari-
ance. The results given by this new criterion are shown in Figure 9.19 and
can be compared with the corresponding Figure 9.13, for the constant ap-
proximation criterion Ci,j. For instance, the regions 9, 10 and 11 of Figure
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Figure 9.15: Segmentation results for planar approxima-
tion.
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Figure 9.16: A 1-D function composed of two regions (a),
with added .noise (b), and approximated by constant values
(c) and inclined lines ( d ).

Figure 9.17: Examples of stair-like regions.

9.19 correspond to a zone of large gray level variation. Using C◦
i,j produces

smaller criterion values because of the large segment variances, and therefore
forces more segment merging in this area. Thus, this new criterion seems
preferable because it adjust itself to local image variance.

9.2.3 Criterion combination
The stepwise optimization algorithm can employ different criteria which
correspond to different segment description models. The previously used
criteria involve very simple models. However, more complex models can
be required by segmentation tasks. Complex models can be obtained from
combinations of simpler ones.
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Figure 9.18: Examples of regions with the same criterion
values but different gray level variances.

Zobrist and Thompson [101] point out that human vision employs many
cues such as brightness, contour, color, texture and stereopsis to perform
perceptual grouping. They stress the limitations of using only one cue at
the time for computer grouping, and show the importance of studying mech-
anisms that combine many cues. For computer simulation of human per-
ception, they derive from each cue a distance function that measures the
similarity of two scene parts. Then, they perform a weighted sum of these
distances to obtain a global perceptual distance.

Applying this approach to image segmentation, it can be noted that
different image areas can require different segment models (cues) and that
these models must be combined in order to obtain good overall results.
Hence, the constant approximation can be appropriate for some parts of a
image while the planar approximtion can be preferable for some other parts.
Thus, it can be advantageous to combine the stepwise criteria associated
with both models. For example, a composite criterion can be obtained as
follows:

C(composite) = C◦
(constant) · C◦

(planar) (9.8)

This corresponds to using the geometric mean of two criteria to form the
composite one. C◦

(·) indicates a local variance adaptable criterion as defined
in the preceding section.

In image segmentation, an ordering of segment descriptions can also
be considered [68]. For example, the pixel gray level can be employed to
form small homogeneous regions, then more complex descriptors, such as
segment contour shape, can be considered for forming larger regions. Many
segment descriptors, such as contour shape, or higher order approximation
coefficients, are meaningless for small regions and only become useful at
a latter stage. In the hierarchical segmentation scheme, this corresponds
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Figure 9.19: Segmentation results for the local variance
adaptable approximation.
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to using a simple criterion for the first merging steps, then, as we get to
a higher level in the segment hierarchy, more complex criteria are used,
involving more complex segment descriptors.

The ordering of segment descriptions and composite criteria are now
employed to segment the Landsat image. The constant approximation cri-
terion, Ci,j, is first used to obtain a partition with 1000 segments. Then the
previously defined composite criterion is employed to continue the segment
merging. The results which combine the characteristics of the preceding
criteria are shown in Figure 9.20. For example, in Figure 9.20-e, the region
15 is represented by an inclined plane as is shown in Figure 9.15-e for the
planar approximation. While the regions 12, 13 and 14 correspond to those
obtained by constant value approximation in Figure 9.13. Thus, the ad-
vantages of planar approximation are exploited, while the previously noted
artefacts are avoided. The constant value approximation is still predominant
for large constant areas.
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Figure 9.20: Segmentation results from criterion combina-
tion.
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Figure 9.21: The SAR image (256×256 pixels).

9.3 Segmentation of a SAR image
The HSO algorithm is now used for a quite different type of image: a SAR
(Synthetic Aperture Radar) image where the presence of speckle produces
an important texture component. Good results are obtained, which demon-
strate the versatility of the algorithm.

The one channel SAR image used in this section is presented in Figure
9.21, [29], [74]. This is an airborne X-band radar image with vertical-vertical
polarization, 256×256 pixels, and a 5 meter resolution. The image covers
a 1.28 km × 1.28 km area near Makofen, in the Federal Republic of Ger-
many. It is an agricultural site composed of sugar beet, wheat, winter barley,
potato, mixed hay and summer wheat, and corn fields.

The presence of coherent speckle makes the image noisy and greatly com-
plicates the segmentation task. The derivation of the best image model or
stepwise criterion for this segmentation task seems difficult [5], [24], [82].
An ad-hoc approach is employed instead, where the image characteristics
are used in a more or less formal way to define stepwise criteria. The seg-
mentation task is divided into two phases. A simple criterion is employed
for an initial partition of the image, then a composite criterion is used for
the subsequent merging steps.

The first phase consists in the partition of the image into 3000 segments
using a simple criterion. The previously defined constant approximation
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Figure 9.22: The average image calculated with a 5×5 win-
dow.

criterion is employed:

C(constant) = Ni · Nj

Ni + Nj

( µi − µj )2 (9.9)

where Ni is the size of the segment Si and µi is its mean value. The criterion
is not applied to the original SAR image, but instead to an averaged version
of this image. The average image is formed by assigning to each pixel the
mean value of a 5×5 centered window (see Figure 9.22). The utilization
of the average image, by reducing the effect of noise (speckle), results in
the division of the image regions into more similar segments. It avoids,
for example, the division of a homogeneous area into some segments which
contain only the lighter pixels while the other segments are composed of
the darker pixels, these two kinds of segments being interleaved. Note that,
because of memory limitations, the image is divided into four independant
blocks of 128×l28 pixels for the first segment mergers.

The second phase employs a composite criterion applied to the original
SAR image to continue the merging of the initial 3000 segments. The seg-
ments can now be characterized by their means, µi, and their variances, σ2

i ,
which can be exploited in the derivation of a segment similarity measure
(criterion). Moreover, the utilization of a segment shape parameter can be
useful to reduce the formation of random contours, an artifacts produced by
the important noise component. Therefore, the employed composite crite-
rion is composed of three parts:

C(composite) = C(constant) · C(variance) · C(shape) (9.10)
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where C(constant) is the previously defined constant approximation criterion
which takes account of the difference between segment means and of the
segment sizes.

C(variance) is defined as:

C(variance) = 1 + |σi − σj| (9.11)

where σ2
i is the gray level variance for segment Si. The variances of the two

segments are employed here in the evaluation of segment similarity. If two
segments possess the same variance, then C(variance) is equal to one, which
does not affect the composite result. If |σi − σj| is equa1 to one or more,
then the composite result is multiplied by 2 or more.

Finally, C(shape) measures the compactness of the segment, Sk, produced
by the merging of Si and Sj, Sk = Si ∪ Sj, [27], [17], [76]. The following
definition is used:

C(shape) = 1 + (1 + σx)(1 + σy)
/

Nk (9.12)

where,

σ2
x =

( 1
Nk

∑
(x,y)∈Sk

x2
)

−
( 1

Nk

∑
(x,y)∈Sk

x
)2

σ2
y =

( 1
Nk

∑
(x,y)∈Sk

y2
)

−
( 1

Nk

∑
(x,y)∈Sk

y
)2

and where Nk (=Ni + Nj) is the size of Sk (=Si ∪ Sj). σx and σy measure
the pixel dispersion along the x and y axes respectively. These values tend
to be small when a segment is compact. Their product is divided by Nk to
compensate for the segment size. A bias of one is added to σx and σy in
order to secure the effect of any one even if the other is null.

This composite criterion is applied to the SAR image in order to continue
the merging of segments. The resulting minimum criterion values, Cmin,k,
are presented in Figure 9.23, while Figure 9.24 shows the corresponding
image partitions for 25, 37 and 86 segments. For 25 segments, the most
prominent areas of the image are correctly distinguished, but there remain
a number of segments that are sub-parts of larger homogeneous regions.
Some of these segments are marked by dots. They result from variations
inside the homogeneous regions. These variations can be regarded as noise
effects and are smaller than the variations between the main regions.

In the 37 segment partition of Figure 9.24-b, finer image components
are considered. A number of the additional segments are distinct regions,
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Figure 9.23: Upper bound of the minimum criterion values.

Figure 9.24: Segmentations of the SAR image with the
composite criterion.
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Figure 9.24: Continued
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and are indicated by a cross "X". The other additional segments result from
variations inside homogeneous regions, some of which are marked by dots.
In the 86 segment partition, most of the additional segments can be regarded
as due to noise effects.

Using the composite criterion in a second phase improves the image seg-
mentation results. Figure 9.25 shows the results obtained by the utilization
of the first phase only. The segment merging is performed with the constant
approximation criterion of equation (9.9), until partitions of 25 and 37 seg-
ments are obtained. One evident difference is the occurrence of segments
along the region boundaries. For example, in Figure 9.25, many region
boundaries, indicated by arrows, are defined by double contour lines. These
double lines delimit an area which must contain the true boundaries. How-
ever, the previous results with the composite criterion show better definition
of the region boundaries.
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Figure 9.25: Segmentations of the SAR image with the
constant approximation criterion only.
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9.4 Comparing image segmentations
The problem of comparing the image partitions produced by different seg-
mentation algorithms is now examined. A cost function, G(P), can be used
to evaluate a image partition, P. The algorithm producing the partition
with the lowest cost is considered as the best one. However, the appropriate
definition of the evaluation function, G(P), is a difficult problem. Previous
works on this topic are first reviewed, then, the results of the HSO algorithm
are compared with the results of other algorithms.

The evaluation of sample point partitions in classification and cluster-
ing techniques is first examined. The classification approach [17] (supervised
learning) assumes that the sample points, v̄i, come from different classes, Ck.
Training samples from each class are employed to calculate the probability
functions of the classes, and to define the classification process. This clas-
sifier is then used to find the class memberships of unknown sample points.
The probability of classification error constitutes a measure of the classifier
performance. Testing samples with known class memberships are employed
to evaluate this probability of error. Thus, the classification approach is
a well formalized problem, and possesses correctly defined evaluation func-
tions. However, the need of training samples is a serious limitation .

The clustering approach [16] (unsupervised learning) does not have this
limitation, but the definition of a "cluster" is more ambiguous; e.g. a cluster
is often defined as a group of similar samples. This affects the evaluation
of the sample partitions. As an example, an often used partition evaluation
measure is the within cluster variance. However, many variations around
this measure are also used. The selection of an evaluation function is often
ad-hoc, which limits the value of the conclusions that can result.

Image segmentation can be considered as a clustering process where spa-
tial information is taken into account. The difficulties are to correctly define
the goal of the image segmentation, and derive performance parameters that
can be effectively calculated. It is often expected that the image segmen-
tation processes match the human vision characteristics, which results in
ill-defined goals.

There are few papers that compare the results of segmentation algo-
rithms. Fram and Deutsch [103] compare different edge detection algo-
rithms. The tests are performed on synthetic images containing vertical
edges only. Two performance parameters are used: 1) the number of de-
tected edge points belonging to the edge zone (signal) divided by the total
number of edges (signal+noise), and 2) the number of rows containing at
least one edge point .
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Goehring and Ledford [26] evaluate segmentation algorithms for target
detection. Different thresholding algorithms are employed to separate the
target areas from the background. The parameters used are 1) the proba-
bility of segmentation (the probability of detecting a true or false target),
and 2) the nuisance rate (the number of false detections).

Levine and Nazif [104] define a segmentation as a partition of the image
into regions that are uniform among themselves and bear contrast to their
adjacent neighbors. They define different performance parameters based
upon region uniformity, region contrast, line contrast, line connectivity and
texture measures.

It must be noted that, in the examined cases, the selected preformance
parameters have a degree of arbitrariness, and that no firm conclusions can
be drawn from the evaluations, although, they can be useful to confirm
subjective statements.

In this thesis, a hierarchical stepwise optimization algorithm (HSO) is
described, and its advantages are analysed for well defined image segmen-
tation goals: the low error approximation of image and the minimization of
the probability of merging error. It is shown that the HSO algorithm can
be used to optimize a global criterion, G(P). The goal of the image segmen-
tation is then expressed through this global criterion, and the evaluation
of the resulting partitions must, therefore, be also based upon this global
criterion. For example, in image approximation, the global criterion is the
approximation error, and the result evaluations must be based upon this
approximation error.

In section 9.2, the HSO algorithm is employed for constant value ap-
proximation. The algorithm is applied to a satellite image, shown in Figure
9.12-a, and a 100 segment partition is obtained (Figure 9.13-a). This pro-
duces an approximation error (standard deviation) of 6.71. This result is
now compared with the one produced by another segmentation algorithm:
an improved version of the algorithm of Narendra and Goldberg [58] pre-
sented in section 3.1. The gradient operator used is the variance inside a
3×3 window. The algorithm is applied to the same image (Figure 9.12-a),
and the smoothing parameter is selected such as to produce approximately
100 segments. The result is a 101 segment partition with an approximation
error (standard deviation) of 10.05, which is higher than the HSO algorithm
result.

In section 9.3, the HSO algorithm is employed to segment a SAR image
(Figure 9.21). A composite stepwise criterion is used, defined in an ad-hoc
manner. Segmentation results are presented in Figure 9.24. Goodenough
et al. [29] have used the Narendra and Goldberg algorithm [58] to segment



Chapter 9. Algorithm Operation and Criterion Selection 115

this same image, and have evaluated the different partitions obtained. An
adaptive filter is first applied to the image to reduce the multiplicative noise
while preserving the edges. Different image partitions result from the utiliza-
tion of different window sizes for the adaptive filter, and different gradient
operators and smoothing parameters for the segmentation algorithm.

Two criteria are used to evaluate the resulting image partitions. First,
it is determined if the manually defined boundaries are present in the seg-
mentation results. From a manually draw edge image, a mask is created
by thickening the edges by ±2 pixels. The mask is applied to each im-
age segmentation in order to retain only the segment contours inside the
edge mask. This is employed to determine the number of manually defined
edges that are also present in the segmentation results. Only the continuous
boundaries are counted for a maximum of 41 edges.

The second criterion evaluates the segmentation performance by the total
number of segments created within known homogeneous fields. Segments in-
side eleven fields are counted for each image segmentations. Partitions where
these fields are broken into the fewest number of segments are considered to
be the best.

The best image partition obtained by Goodenough et al. possesses 32
correctly identified edges, and has 404 segments inside the 11 homogeneous
fields. This partition contains a total of 703 segments, and is produced by
using a 11×11 window for the filter and a variance operator for the gradient
image.

The same evaluation procedure is now applied to the results of the HSO
algorithm which are presented in the section 9.3. A 703 segment partition
is first used in order to facilitate the comparison. This partition possesses
33 correctly identified edges and has 361 segments inside the 11 homoge-
neous fields (see Table 9.1). The partition presented in Figure 9.24-c is also
evaluated. In this case, 29 edges are correctly identified and the 11 homo-
geneous fields are split into 52 segments. This partition contains a total of
86 segments.

For an initial trial, these last results compare favorably with those of
Goodenough et al. [29]. They can be improved by using more appropriate
stepwise criteria. The HSO algorithm has the advantages that a partition
with the required number of segments is easily produced, and that good
results are obtained even for partitions with a small number of segments.
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Table 9.1: Image partition evaluation.

identified
edges

segments inside
homogeneous fields

Goodenough et al. [29]
( 703 segments ) 32 404

HSO algorithm
( 703 segments ) 33 361

( 86 segments ) 29 52



Chapter 10

Summary and Suggestions for
Further Research

The main contributions of the thesis are as follows:

1) The survey of image segmentation techniques:
The segmentation algorithms are divided into categories according to
the definitions of segments adopted. Image segmentation techniques are
regarded as data classification and clustering processes where the spatial
information is included as new features or in the distance measures used.

2) The presentation of a new hierarchical segmentation algorithm:
A hierarchical segmentation algorithm based upon stepwise optimization
is described. The advantages of the HSO algorithm over hierarchical
algorithms using logical predicates are shown. Considerations for an
efficient implementation of the HSO algorithm are also discussed.

3) The combination of segment optimization and hierarchy:
The algorithm is advantageously employed in a global optimization
problem: the piece-wise approximation of images. When the stepwise
criterion is derived from the global one, the stepwise optimization algo-
rithm becomes a sub-optimal process which exploits the advantage of
segment hierarchy to reduce the search space.

4) The analysis of error probability in hierarchical segmentation:
Image segmentation is regarded as an hypothesis testing process which
merges two segments only if they belong to the same region. It is shown
that, at each step of a hierarchical segmentation process, the merging
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of dissimilar segments is the most serious error, and therefore its prob-
ability must be minimized. This is acheived by the HSO algorithm.
The probability of stepwise error is derived, and the effects of segment
sizes are analysed. The increase of the minimum criterion values is also
employed to distinguish the noise from the signal components.

5) The illustration of the capability of the HSO algorithm:
The algorithm is shown to be adaptable to different segmentation tasks
by an appropriate selection of the stepwise criterion. Segmentation ex-
amples illustrate the operation of the algorithm, and its ability to exploit
the hierarchical structure of the image in order to produce a partition
with the required amount of details. Good segmentation results are
reported for remote sensing images.

Several areas of future research in image segmentation which can com-
plement this thesis are now presented.

1) Evaluation of the segmentation results:
The HSO algorithm can be regarded as a sub-optimal process. The
evaluation of the difference between the algorithm result and the global
optimum can be useful, in particular, to measure the performance of the
algorithm. However, this evaluation is difficult because, in general, the
global optimum can be calculated only for simple cases. More generally,
there is a need to compare and evaluate the results of image segmenta-
tion algorithms, and any contribution to this topic will be worthwhile.

2) Combination of stepwise optimization and iterative local optimization:
An iterative process, using a "steepest descent" like approach, can be
employed to improve an initial image partition (see section 5.2). A
"steepest descent" algorithm and a HSO algorithm can be derived from
the same global criterion. These two versatile sub-optimum processes
could then be combined to produce results that are closer to the desired
global optimum. For example, the "steepest descent" algorithm could
be applied to improve the result of the HSO algorithm.

3) Analysis of the sequence of minimum criterion values:
The analysis of the minimum criterion values yielded by the HSO algo-
rithm can provide useful information on the image structure and on the
appropriate stopping points. Although some aspects have been studied
in the section 8.9, 8.10 and 9.1, much work remains.
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4) Exploration of new segment models and segmentation criteria:
An important issue in image segmentation is the selection of the segment
model and segmentation criterion that is the most appropriate for each
particular application. This issue is related to the problem of image
partition evaluation, and concerns basically the appropriate definition
of the goal of a image segmentation task. Some aspects of this problem
have been discussed in the thesis. However, this is a complex problem
that still requires considerable research.

5) Developing faster versions of the algorithm:
For many applications, the large computing time required by the HSO
algorithm constitues a severe limitation. The characteristics of specific
applications can be exploited in order to develop faster versions of the
algorithm.



Appendix A

Probability Function of the
Minimum Value

The following proposition is proved by a recursive demonstration.

Proposition: Let x(K) be the minimum value of a set of K inde-
pendant random variables, {xi}, with identical probability functions
P(x), then, for any K ≥ 2, the probability function of x(K) is:

P(K)(x(K)) =
K∑

j=1
(−1)j+1 K!

j! (K − j)!
P(x(K))j (A.1)

Proof:
a) The proposition is proved for K = 2 as follows (see [66], p. 192):

P(2)(x(2)) = 2 P(x(2)) − P(x(2))2

=
2∑

j=1
(−1)j+1 2!

j! (2 − j)!
P(x(2))j

(A.2)

b) It is now proved that, if the proposition is true for K = n, then the
proposition is also true for K = n + 1.

If the probability function for x(n) (=min{x1, x2 . . . , x(n)}) is:

P(n)(x(n)) =
n∑

j=1
(−1)j+1 n!

j! (n − j)!
P(x(n))j (A.3)

then the probability function for

y = x(n+1) = min{x1, x2 . . . , xn+1}
= min{ x(n), xn+1 }

(A.4)
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is given by (see [66], p. 192)

P(n+1)(y) = P(y) + P(n)(y) − P(y) P(n)(y)

P(n+1)(y) = P(y) +
n∑

j=1
(−1)j+1 n!

j! (n − j)!
P(y)j

+
n∑

i=1
(−1)i+2 n!

i! (n − i)!
P(y)i+1

P(n+1)(y) = P(y) +
n∑

j=1
(−1)j+1 n!

j! (n − j)!
P(y)j

+
n+1∑
j=2

(−1)j+1 n!
(j − 1)! (n + 1 − j)!

P(y)j

P(n+1)(y) = P(y) + n!
(n − 1)!

P(y)

+
n∑

j=2
(−1)j+1 n!

(j-1)! (n+1-j)!
+ n!

j! (n-j)!
P(y)j

+ (−1)n+2 n!
n!

P(y)n+1

P(n+1)(y) = (n + 1) P(y)

+
n∑

j=2
(−1)j+1 (n + 1)!

j! (n + 1 − j)!
P(y)j

+ (−1)n+2 (n + 1)!
(n + 1)!

P(y)n+1

P(n+1)(y) =
n+1∑
j=1

(−1)j+1 (n + 1)!
j! (n + 1 − j)!

P(y)j

(A.5)

c) From a) and b), it can be concluded that the proposition is true for any
K ≥ 2.



Appendix B

The Best Estimate of an Image
Partition

The best estimate of the true image partition is derived and shown to cor-
respond to the image partition that minimizes the approximation error. Let
R = {Ri} be the true image partition, mi be the constant value for region
Ri, and f(x, y) be the observed image value

f(x, y) = mi + e(x, y) for ∀ (x, y) ∈ Ri. (B.1)

where e(x, y) are Gaussian independant random variables with zero mean
and variance of σ2. Then, the best estimate R̂ = {R̂i} of the image partition
maximizes the likelihood function

L(R̂|f) = Prob( f | R̂ )

=
∏
(x,y)

1√
2π σ

exp
(

−(f(x, y) − m̂(x,y))2

2 σ2

)

=
(

1√
2π σ

)n

exp

−
∑
(x,y)

(f(x, y) − m̂(x,y))2

2 σ2


(B.2)

where m̂(x,y) = m̂i for (x, y) ∈ R̂i, m̂i being the constant value for region
R̂i, and where n is the number of pixels in the image. Thus, maximizing
L(R̂|f) corresponds to minimizing∑

(x,y)
(f(x, y) − m̂(x,y))2 (B.3)

which can be rewritten as∑
R̂i

∑
(x,y)∈R̂i

(f(x, y) − m̂i)2. (B.4)
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The best estimate thus corresponds to the partition with the lowest ap-
proximation error, and it can be shown that the best value for m̂i is the
mean value of the region R̂i.
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